Truth in a Logic of Formal Inconsistency: How classical can it get?

Author:

Picollo Lavinia1

Affiliation:

1. University College London, London, UK

Abstract

AbstractWeakening classical logic is one of the most popular ways of dealing with semantic paradoxes. Their advocates often claim that such weakening does not affect non-semantic reasoning. Recently, however, Halbach and Horsten (2006) have shown that this is actually not the case for Kripke’s fixed-point theory based on the Strong Kleene evaluation scheme. Feferman’s axiomatization $\textsf{KF}$ in classical logic is much stronger than its paracomplete counterpart $\textsf{PKF}$, not only in terms of semantic but also in arithmetical content. This paper compares the proof-theoretic strength of an axiomatization of Kripke’s construction based on the paraconsistent evaluation scheme of $\textsf{LP}$, formulated in classical logic with that of an axiomatization directly formulated in $\textsf{LP}$, extended with a consistency operator. The ultimate goal is to find out whether paraconsistent solutions to the paradoxes that employ consistency operators fare better in this respect than paracomplete ones.

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference31 articles.

1. A calculus for antinomies;Asenjo;Notre Dame Journal of Formal Logic,1966

2. Natural 3-valued logic: characterization and proof theory;Avron;Journal of Symbolic Logic,1991

3. Classical Gentzen-type methods in propositional many-valued logics;Avron,2003

4. A paraconsistent route to semantic closure;Barrio;Logic Journal of the IGPL,2017

5. A rich paraconsistent extension of full positive logic;Batens;Logique et Analyse,2004

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paraconsistent logic and query answering in inconsistent databases;Journal of Applied Non-Classical Logics;2024-01-02

2. A Cartography of LFIs and Truth;Synthese Library;2024

3. Belnap-Dunn Logic and Query Answering in Inconsistent Databases with Null Values;Scientific Annals of Computer Science;2023-12-20

4. Semantic Closure and Classicality;Revista de Humanidades de Valparaíso;2023-10-31

5. Notes on Models of (Partial) Kripke–Feferman Truth;Studia Logica;2022-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3