Beta Hebbian Learning for intrusion detection in networks with MQTT Protocols for IoT devices

Author:

Michelena Álvaro1,García Ordás María Teresa2,Aveleira-Mata José3,Marcos del Blanco David Yeregui4,Timiraos Díaz Míriam5,Zayas-Gato Francisco6,Jove Esteban7,Casteleiro-Roca José-Luis8,Quintián Héctor9,Alaiz-Moretón Héctor10,Luis Calvo-Rolle José11

Affiliation:

1. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, alvaro.michelena@udc.es

2. Department of Electrical and Systems Engineering , University of León, 24007 León, Spain, mgaro@unileon.es

3. Department of Electrical and Systems Engineering , University of León, 24007 León, Spain, jose.aveleira@unileon.es

4. Department of Mechanic Engineering , Computer and Aerospacial Sciences, University of León, 24007 León, Spain, david.yeregui.marcos@gmail.com

5. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, miriam.timiraos.diaz@udc.es

6. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, f.zayas.gato@udc.es

7. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, esteban.jove@udc.es

8. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, jose.luis.casteleiro@udc.es

9. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, hector.quintian@udc.es

10. Department of Electrical and Systems Engineering , University of León, 24007 León, Spain, hector.moreton@unileon.es

11. Department of Industrial Engineering , University of A Coruña, CTC, CITIC, 15403 Ferrol, A Coruña, Spain, jlcalvo@udc.es

Abstract

Abstract This paper aims to enhance security in IoT device networks through a visual tool that utilizes three projection techniques, including Beta Hebbian Learning (BHL), t-distributed Stochastic Neighbor Embedding (t-SNE) and ISOMAP, in order to facilitate the identification of network attacks by human experts. This work research begins with the creation of a testing environment with IoT devices and web clients, simulating attacks over Message Queuing Telemetry Transport (MQTT) for recording all relevant traffic information. The unsupervised algorithms chosen provide a set of projections that enable human experts to visually identify most attacks in real-time, making it a powerful tool that can be implemented in IoT environments easily.

Publisher

Oxford University Press (OUP)

Reference36 articles.

1. Multiclass classification procedure for detecting attacks on mqtt-iot protocol;Alaiz-Moreton;Complexity,2019

2. Analysis of security threats in wireless sensor network;Alamànd;International Journal of Wireless Mobile Networks (IJWMN),2014

3. Anomaly-based intrusion detection systems in iot using deep learning: a systematic literature review;Alsoufi;Applied Sciences,2021

4. Attack scenarios and security analysis of mqtt communication protocol in iot system;Andy,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3