Comparative Study of Imputation Algorithms Applied to the Prediction of Student Performance

Author:

Crespo-Turrado Concepción1,Casteleiro-Roca José Luis2,Sánchez-Lasheras Fernando3,López-Vázquez José Antonio2,De Cos Juez Francisco Javier3,Pérez Castelo Francisco Javier2,Calvo-Rolle José Luis2,Corchado Emilio4

Affiliation:

1. University of Oviedo, Maintenance Department, San Francisco 3, Oviedo 33007, Spain

2. University of A Coruña, Departamento de Ingeniería Industrial, A Coruña 15405, Spain

3. University of Oviedo, Department of Mathematics, Facultad de Ciencias, Oviedo 33007, Spain

4. University of Salamanca, Departamento de Informática y Automática, Plaza de la Merced s/n, 37.008, Salamanca, Salamanca, Spain

Abstract

Abstract Student performance and its evaluation remain a serious challenge for education systems. Frequently, the recording and processing of students’ scores in a specific curriculum have several flaws for various reasons. In this context, the absence of data from some of the student scores undermines the efficiency of any future analysis carried out in order to reach conclusions. When this is the case, missing data imputation algorithms are needed. These algorithms are capable of substituting, with a high level of accuracy, the missing data for predicted values. This research presents the hybridization of an algorithm previously proposed by the authors called adaptive assignation algorithm (AAA), with a well-known technique called multivariate imputation by chained equations (MICE). The results show how the suggested methodology outperforms both algorithms.

Funder

Ministry of Economy and Competitiveness

Government of the Principality of Asturias

Publisher

Oxford University Press (OUP)

Subject

Logic

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach;Logic Journal of the IGPL;2024-05-09

2. Data dimensionality reduction for an optimal switching mode classification applied to a step-down power converter;Logic Journal of the IGPL;2024-04-06

3. An automatic prediction of students’ performance to support the university education system: a deep learning approach;Multimedia Tools and Applications;2024-01-20

4. An Anomaly Detection Approach for Realtime Identification Systems Based on Centroids;International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022);2022-11-05

5. A Novel Proposal for Estimating PID Parameters Based on Centroids;CONTROLO 2022;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3