A detailed analysis of the interpretability of Convolutional Neural Networks for text classification

Author:

Giménez Maite1,Fabregat-Hernández Ares2,Fabra-Boluda Raül3,Palanca Javier4,Botti Vicent5

Affiliation:

1. Valencian Research Institute for Artificial Intelligence (VRAIN) Universitat Politècnica de València , Camí de Vera s/n, 46022, Valencia , Spain , mgimenez@dsic.upv.es

2. Valencian Research Institute for Artificial Intelligence (VRAIN) Universitat Politècnica de València , Camí de Vera s/n, 46022, Valencia , Spain , arfabher@etsii.upv.es

3. Valencian Research Institute for Artificial Intelligence (VRAIN) Universitat Politècnica de València , Camí de Vera s/n, 46022, Valencia , Spain , rafabbo@dsic.upv.es

4. Valencian Research Institute for Artificial Intelligence (VRAIN) Universitat Politècnica de València , Camí de Vera s/n, 46022, Valencia , Spain , jpalanca@dsic.upv.es

5. Valencian Research Institute for Artificial Intelligence (VRAIN) Universitat Politècnica de València , Camí de Vera s/n, 46022, Valencia, Spain and Valencian Graduate School and Research Network of Artificial Intelligence (valgrAI), Valencia , Spain , vbotti@dsic.upv.es

Abstract

Abstract Convolutional Neural Networks (CNNs) have become ubiquitous in many NLP tasks. However, understanding its process is still an area with much to be done. In this paper, we introduce a method to study the interpretability of CNNs when used for text classification. More specifically, we work on the interpretability of the convolutional filters in the context of sentiment analysis. The framework used in this paper has allowed the understanding of the mechanics of the network when applied to the task of sentiment analysis. The results of the experiments reveal how certain parts of speech (POS) tags are more relevant than others to the classification of a sentence. Furthermore, we also observed a preference for shorter $n$-grams when classifying negative sentiment sequences. Additionally, we detected a certain amount of redundancy among the convolutional filters, thus allowing us to conclude that smaller architectures would have worked for this particular task. This was achieved by computing the relevant metrics to measure the influence of the pertinent property on the desired class. In our case, the concepts treated were POS tags that carry semantic information and properties were related to the convolutional filters.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3