Modified LDA vector and feedback analysis for short query Information Retrieval systems

Author:

Celard Pedro1,Lorenzo Iglesias Eva2,Manuel Sorribes-Fdez José3,Romero Rubén4,Seara Vieira Adrián5,Borrajo Lourdes6

Affiliation:

1. Computer Science Department , Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Univ. As Lagoas, Ourense 32004 , Spain , pedro.celard.perez@uvigo.es

2. CINBIO–Biomedical Research Centre , Universidade de Vigo, Campus Univ. Lagoas-Marcosende, Vigo 36310 , Spain , eva@uvigo.es

3. SING Research Group , Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo , Spain , sorribes@uvigo.es

4. Computer Science Department , Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Univ. As Lagoas, Ourense 32004 , Spain , rrgonzalez@uvigo.es

5. Computer Science Department , Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Univ. As Lagoas, Ourense 32004 , Spain , adrseara@uvigo.es

6. Computer Science Department , Universidade de Vigo, Escuela Superior de Ingeniería Informática, Campus Univ. As Lagoas, Ourense 32004 , Spain , lborrajo@uvigo.es

Abstract

Abstract Information Retrieval systems benefit from the use of long queries containing a large volume of search-relevant information. This situation is not common, as users of such systems tend to use very short and precise queries with few keywords. In this work we propose a modification of the Latent Dirichlet Allocation (LDA) technique using data from the document collection and its vocabulary for a better representation of short queries. Additionally, a study is carried out on how the modification of the proposed LDA weighted vectors increase the performance using relevant documents as feedback. The work shown in this paper is tested using three biomedical corpora (TREC Genomics 2004, TREC Genomics 2005 and OHSUMED) and one legal corpus (FIRE 2017). Results prove that the application of the proposed representation technique, as well as the feedback adjustment, clearly outperforms the baseline methods (BM25 and non-modified LDA).

Funder

Xunta de Galicia

Conselleria de Cultura, Educación e Universidade

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3