Detection of transiting exoplanets and phase-folding their host star’s light curves from K2 data with 1D-CNN

Author:

Álvarez Santiago Iglesias1ORCID,Alonso Enrique Díez2ORCID,Rodríguez Javier Rodríguez3ORCID,Fernández Saúl Pérez3ORCID,Tutasig Ronny Steveen Anangonó3ORCID,Gutiérrez Carlos González3ORCID,Roca Alejandro Buendía3ORCID,Díaz Julia María Fernández3ORCID,Rodríguez Maria Luisa Sánchez3ORCID

Affiliation:

1. Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA) , C. Independencia 13, 33004 Oviedo, Spain , iglesiassantiago@uniovi.es

2. Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA) , C. Independencia 13, 33004 Oviedo, Spain , diezenrique@uniovi.es

3. Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA) , C. Independencia 13, 33004 Oviedo, Spain

Abstract

Abstract In this research, we present two 1D Convolutional Neural Network (CNN) models that were trained, validated and tested using simulated light curves designed to mimic those expected from the Kepler Space Telescope during its extended mission (K2). We also tested them on real K2 data. Our light curve simulator considers different stellar variability phenomena, such as rotations, pulsations and flares, which along with the stellar noise expected for K2 data, hinders the transit signal detection, as in real data. The first model effectively identifies transit-like signals in light curves, classifying them based on the presence or absence of such signals. Furthermore, the second model not only phase-folds the light curves but also eliminates stellar noise, a crucial step when fitting transits to the Mandel and Agol theoretical transit shape. The obtained results include an accuracy of $\sim 99\%$ when classifying the light curves based on the presence or absence of transit-like signals, and $MAPE\sim 6\%$ regarding to the transits’ depth and duration when phase folding the light curves, showing the great capabilities of 1D-CNN for automatizing the transit search in light curves, both on simulated and real data.

Publisher

Oxford University Press (OUP)

Reference34 articles.

1. Scientific domain knowledge improves exoplanet transit classification with deep learning;Ansdell;The Astrophysical Journal Letters,2018

2. The CoRoT satellite in flight: description and performance;Auvergne;Astronomy & Astrophysics,2009

3. Toward Reliable Benchmarking of Solar Flare Forecasting Methods;Shaun Bloomfield;The Astrophysical Journal Letters,2012

4. Kepler planet-detection mission: Introduction and first results;Borucki;Science,2010

5. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters;Bridle,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3