Multi-agent reinforcement learning based algorithm detection of malware-infected nodes in IoT networks

Author:

Severt Marcos1,Casado-Vara Roberto23,del Rey Ángel Martín4,Quintián Héctor5,Luis Calvo-Rolle Jose6

Affiliation:

1. Universidad de Salamanca , Patio de Escuelas, 1, 37008, Salamanca , Spain , marcos_ss@usal.es

2. Grupo de Inteligencia Computacional Aplicada (GICAP) , Departamento de Matemáticas y Computación, Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , rccasado@ubu.es

3. Universidad de Burgos , Departamento de Matemáticas y Computación, Escuela Politécnica Superior, , Av. Cantabria s/n, 09006, Burgos , Spain , rccasado@ubu.es

4. Universidad de Salamanca Department of Applied Mathematics, , Patio de Escuelas, 1, 37008, Salamanca , Spain , delrey@usal.es

5. University of A Coruña Department of Industrial Engineering, , CTC, CITIC, 15403, Ferrol, A Coruña , Spain , hector.quintian@udc.es

6. University of A Coruña Department of Industrial Engineering, , CTC, CITIC, 15403, Ferrol, A Coruña , Spain , jlcalvo@udc.es

Abstract

Abstract The Internet of Things (IoT) is a fast-growing technology that connects everyday devices to the Internet, enabling wireless, low-consumption and low-cost communication and data exchange. IoT has revolutionized the way devices interact with each other and the internet. The more devices become connected, the greater the risk of security breaches. There is currently a need for new approaches to algorithms that can detect malware regardless of the size of the network and that can adapt to dynamic changes in the network. Through the use of a multi-agent reinforcement learning algorithm, this paper proposes a novel algorithm for malware detection in IoT devices. The proposed algorithm is not strongly dependent on the size of the IoT network due to the that its training is adapted using time differences if the IoT network size is small or Monte Carlo otherwise. To validate the proposed algorithm in an environment as close to reality as possible, we proposed a scenario based on a real IoT network, where we tested different malware propagation models. Different simulations varying the number of agents and nodes in the IoT network have been developed. The result of these simulations proves the efficiency and adaptability of the proposed algorithm in detecting malware, regardless of the malware propagation model.

Publisher

Oxford University Press (OUP)

Reference40 articles.

1. Machine learning approaches to iot security: A systematic literature review;Ahmad;Internet of Things,2021

2. Network intrusion detection system: a systematic study of machine learning and deep learning approaches;Ahmad;Transactions on Emerging Telecommunications Technologies,2021

3. Deep learning models for cyber security in iot networks: a review;Ahmed;International Journal of Science and Business,2021

4. Ddos attacks in iot networks: a comprehensive systematic literature review;Al-Hadhrami;World Wide Web,2021

5. Cyber threat intelligence for secure smart city;Al-Taleb,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3