FCA-based reasoning for privacy

Author:

Aranda-Corral Gonzalo A1,Borrego-Díaz Joaquín2,Galán-Páez Juan3

Affiliation:

1. Department of Information Technology, Universidad de Huelva , Avda. de las Fuerzas Armadas s/n. 21007 Huelva, Spain, gonzalo.aranda@dti.uhu.es

2. Department of Computer Science and Artificial Intelligence , Universidad de Sevilla, Avda. Reina Mercedes s.n. 41012-Sevilla, Spain, jborrego@us.es

3. Department of Computer Science and Artificial Intelligence , Universidad de Sevilla, Avda. Reina Mercedes s.n. 41012-Sevilla, Spain and Datrik Intelligence S.A., Spain, juangalan@us.es

Abstract

Abstract Notwithstanding the potential danger to security and privacy, sharing and publishing data has become usual in Data Science. To preserve privacy, de-identification methodologies guided by risk estimation have been designed. Two issues associated with classical risk metrics are, on the one hand, the adequacy of the metric and, on the other hand, its static nature. In this paper, we present metrics for estimating risk based on the emerging semantics provided by Formal Concept Analysis. The metrics are designed to estimate the a priori risk of compromised data deletion. Furthermore, by applying specialized variable forgetting methods for association rules, it is shown how to reflect the effect of deleting attributes belonging to potentially dangerous quasi-identifier sets. Additionally, a study of the role of the risk metric in confidence-based reasoning for re-identification is presented.

Publisher

Oxford University Press (OUP)

Reference30 articles.

1. A three-way clustering approach for handling missing data using GTRS;Afridi;International Journal of Approximate Reasoning,2018

2. A logic-algebraic tool for reasoning with knowledge-based systems;Alonso-Jiménez;J. Log. Algebr. Meth. Program,2018

3. Confidence-based reasoning with local temporal formal contexts;Aranda-Corral,2011

4. Complex concept lattices for simulating human prediction in sport;Aranda-Corral;Journal of Systems Science and Complexity,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3