An evolutionary scheduling approach for trading-off accuracy vs. verifiable energy in multicore processors

Author:

Liqat U1,Banković Z2,Lopez-Garcia P3,Hermenegildo M V1

Affiliation:

1. IMDEA Software Institute and Universidad Politécnica de Madrid (UPM), Spain.

2. IMDEA Software Institute, Madrid, Spain.

3. Spanish Council for Scientific Research (CSIC) and IMDEA Software Institute, Madrid, Spain.

Abstract

Abstract This work addresses the problem of energy-efficient scheduling and allocation of tasks in multicore environments, where the tasks can allow a certain loss in accuracy in the output, while still providing proper functionality and meeting an energy budget. This margin for accuracy loss is exploited by using computing techniques that reduce the work load, and thus can also result in significant energy savings. To this end, we use the technique of loop perforation, that transforms loops to execute only a subset of their original iterations, and integrate this technique into our existing optimization tool for energy-efficient scheduling. To verify that a schedule meets an energy budget, both safe upper and lower bounds on the energy consumption of the tasks involved are needed. For this reason, we use a parametric approach to estimate safe (and tight) energy bounds that are practical for energy verification (and optimization applications). This approach consists in dividing a program into basic (‘branchless’) blocks, establishing the maximal (resp. minimal) energy consumption for each block using an evolutionary algorithm, and combining the obtained values according to the program control flow, by using static analysis to produce energy bound functions on input data sizes. The scheduling tool uses evolutionary algorithms coupled with the energy bound functions for estimating the energy consumption of different schedules. The experiments with our prototype implementation were performed on multicore XMOS chips, but our approach can be adapted to any multicore environment with minor changes. The experimental results show that our new scheduler enhanced with loop perforation improves on the previous one, achieving significant energy savings (31% on average for the test programs) for acceptable levels of accuracy loss.

Funder

MINECO

Publisher

Oxford University Press (OUP)

Subject

Logic

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3