Automatic detection of faults in industrial production of sandwich panels using Deep Learning techniques

Author:

Lopez Florez Sebastian1,González-Briones Alfonso2,Chamoso Pablo3,Saberi Mohamad Mohd4

Affiliation:

1. Grupo de Investigación BISITE , Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de Salamanca, Calle Espejo 2, 24.2, 37007, Salamanca, Spain and Universidad Tecnológica de Pereira Cra. 27 N 10-02, Pereira, Risaralda , Colombia , sebastianlopezflorez@usal.es

2. Grupo de Investigación BISITE , Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de Salamanca, Calle Espejo 2, 24.2, 37007, Salamanca , Spain , alfonsogb@usal.es

3. Grupo de Investigación BISITE , Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de Salamanca, Calle Espejo 2, 24.2, 37007, Salamanca , Spain , chamoso@usal.es

4. Department of Genetics and Genomics , College of Medical and Health Sciences, United Arab Emirates University, Abu Dhabi, 37001 , United Arab Emirates , saberi@uaeu.ac.ae

Abstract

Abstract The use of technologies like artificial intelligence can drive productivity growth, efficiency and innovation. The goal of this study is to develop an anomaly detection method for locating flaws on the surface of sandwich panels using YOLOv5. The proposed algorithm extracts information locally from an image through a prediction system that creates bounding boxes and determines whether the sandwich panel surface contains flaws. It attempts to reject or accept a product based on quality levels specified in the standard. To evaluate the proposed method, a comparison was made with a sandwich panel damage detection method based on a convolutional neural network and methods based on thresholding. The findings show that the proposed method, which is based on an object detector, is more accurate than the alternatives. The characteristics of the model, which can reject or accept a product according to the standard and limit allowable manufacturing flaws to obtain a quality product, also enable this system to improve industrial standards for producing sandwich panels while increasing speed.

Publisher

Oxford University Press (OUP)

Reference23 articles.

1. Deep learning-based crack detection in a concrete tunnel structure using multispectral dynamic imaging;Ali,2020

2. Thermal rehabilitation of existing building enclosures by using vip (vacuum insulation panel) sandwich and timber based panels;Buxbaum;Journal of Building Physics,2011

3. Revisión del proceso de adaptación al marcado ce de los paneles sandwich autoportantes;Cabal,2007

4. A lightweight vehicles detection network model based on yolov5;Dong;Engineering Applications of Artificial Intelligence,2022

5. Virtual metrology as an approach for product quality estimation in industry 4.0: a systematic review and integrative conceptual framework;Dreyfus;International Journal of Production Research,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3