A Pseudo-Deterministic Noisy Extremal Optimization algorithm for the pairwise connectivity Critical Node Detection Problem

Author:

Gaskó Noémi12,Suciu Mihai-Alexandru34,Ioana Lung Rodica5,Képes Tamás67

Affiliation:

1. Babeş-Bolyai University of Cluj-Napoca , Faculty of Mathematics and Computer Science, , gaskonomi@yahoo.com

2. Babeş-Bolyai University of Cluj-Napoca, Centre for the Study of Complexity , Faculty of Mathematics and Computer Science, , gaskonomi@yahoo.com

3. Babeş-Bolyai University of Cluj-Napoca , Faculty of Mathematics and Computer Science, , mihai.suciu@ubbcluj.ro

4. Babeş-Bolyai University of Cluj-Napoca, Centre for the Study of Complexity , Faculty of Mathematics and Computer Science, , mihai.suciu@ubbcluj.ro

5. Babeş-Bolyai University of Cluj-Napoca, Centre for the Study of Complexity , rodica.lung@ubbcluj.ro

6. Babeş-Bolyai University of Cluj-Napoca , Faculty of Mathematics and Computer Science, , tamas.kepes@ubbcluj.ro

7. Babeş-Bolyai University of Cluj-Napoca, Centre for the Study of Complexity , Faculty of Mathematics and Computer Science, , tamas.kepes@ubbcluj.ro

Abstract

Abstract The critical node detection problem is a central task in computational graph theory due to its large applicability, consisting in deleting $k$ nodes to minimize a certain graph measure. In this article, we propose a new Extremal Optimization-based approach, the Pseudo-Deterministic Noisy Extremal Optimization (PDNEO) algorithm, to solve the Critical Node Detection variant in which the pairwise connectivity is minimized. PDNEO uses an adaptive pseudo-deterministic parameter to switch between random nodes and articulation points during the search, as well as other features, such as noise induction to preserve diversity, greedy search to better exploit the search space and a greater search space exploration mechanism. Numerical experiments on synthetic and real-world networks show the effectiveness of the proposed algorithm compared with existing methods.

Funder

Romanian National Authority for Scientific Research and Innovation

CNCS - UEFISCDI

Publisher

Oxford University Press (OUP)

Reference43 articles.

1. A general evolutionary framework for different classes of critical node problems;Aringhieri;Engineering Applications of Artificial Intelligence,2016

2. Local search metaheuristics for the critical node problem;Aringhieri;Networks,2016

3. Detecting critical nodes in sparse graphs;Arulselvan;Computers & Operations Research,2009

4. Managing network risk via critical node identification;Arulselvan,2007

5. Cardinality-constrained critical node detection problem;Arulselvan,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3