Constructive theories through a modal lens

Author:

Tesi Matteo1

Affiliation:

1. Scuola Normale Superiore di Pisa, Classe di Lettere e Filosofia , 56126 Pisa, Italy and Technische Universität Wien, Institute of Logic and Computation, A-1040 Vienna, Austria

Abstract

Abstract We present a uniform proof-theoretic proof of the Gödel–McKinsey–Tarski embedding for a class of first-order intuitionistic theories. This is achieved by adapting to the case of modal logic the methods of proof analysis in order to convert axioms into rules of inference of a suitable sequent calculus. The soundness and the faithfulness of the embedding are proved by induction on the height of the derivations in the augmented calculi. Finally, we define an extension of the modal system for which the result holds with respect to geometric intuitionistic.

Publisher

Oxford University Press (OUP)

Subject

Logic

Reference20 articles.

1. Modal Logic

2. Modal logics between S4 and S5;Dummet;Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,1959

3. Proof analysis in intermediate logic;Dyckhoff;Archive for Mathematical Logic,2012

4. A cut-free sequent system for Grzegorczyk logic with an application to the Gödel–McKinsey–Tarski embedding;Dyckhoff;Journal of Logic and Computation,2016

5. Epistemic and intuitionistic formal systems;Flagg;Annals of Pure and Applied Logic,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3