Missing data imputation over academic records of electrical engineering students

Author:

Jove Esteban1,Blanco-Rodríguez Patricia2,Casteleiro-Roca José-Luis1,Quintián Héctor1,Moreno Arboleda Francisco Javier3,LóPez-Vázquez José Antonio1,Rodríguez-Gómez Benigno Antonio1,Meizoso-López María Del Carmen1,Piñón-Pazos Andrés1,De Cos Juez Francisco Javier4,Cho Sung-Bae5,Calvo-Rolle José Luis1

Affiliation:

1. Department of Industrial Engineering,University of A Coruña, Avda. 19 de febrero s/n, 15405 Ferrol, A Coruña, Spain

2. Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain

3. Universidad Nacional de Colombia, Facultad de Minas, Sede Medellín, Carrera 80 No 65-223, 050034 Medellín, Colombia

4. Department of Mining Exploitation,University of Oviedo, Calle San Francisco, 1, 33004 Oviedo, Spain

5. Department of Computer Science,Yonsei University, Seoul 03722, South Korea

Abstract

Abstract Nowadays, the quality standards of higher education institutions pay special attention to the performance and evaluation of the students. Then, having a complete academic record of each student, such as number of attempts, average grade and so on, plays a key role. In this context, the existence of missing data, which can happen for different reasons, leads to affect adversely interesting future analysis. Therefore, the use of imputation techniques is presented as a helpful tool to estimate the value of missing data. This work deals with the academic records of engineering students, in which imputation techniques are applied. More specifically, it is assessed and compared to the performance of the multivariate imputation by chained equations methodology, the adaptive assignation algorithm (AAA) based on multivariate adaptive regression splines and a hybridization based on self-organisation maps with Mahalanobis distances and AAA algorithm. The results show that proposed methods obtain successfully results regardless the number of missing values, in general terms.

Funder

Ministry of Economy and Competitiveness

Ministry of Economy

2019 IT promotion fund

Development of AI based Precision Medicine Emergency System

Ministry of Science and ICT

Publisher

Oxford University Press (OUP)

Subject

Logic

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clustering techniques performance comparison for predicting the battery state of charge: A hybrid model approach;Logic Journal of the IGPL;2024-05-09

2. Data dimensionality reduction for an optimal switching mode classification applied to a step-down power converter;Logic Journal of the IGPL;2024-04-06

3. An Anomaly Detection Approach for Realtime Identification Systems Based on Centroids;International Joint Conference 15th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2022) 13th International Conference on EUropean Transnational Education (ICEUTE 2022);2022-11-05

4. Hybrid Intelligent Model for Classification of the Boost Converter Switching Operation;Lecture Notes in Computer Science;2022

5. Synergistic effects between data corpora properties and machine learning performance in data pipelines;International Journal of Data Mining, Modelling and Management;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3