A 21-bp InDel in the promoter ofSTP1selected during tomato improvement accounts for soluble solid content in fruits

Author:

Wang Ying1,Shi Chunmei1,Ge Pingfei1,Li Fangman1,Zhu Lihui1,Wang Yaru1,Tao Jinbao1,Zhang Xingyu1,Dong Haiqiang1,Gai Wenxian1,Wang Fei1,Ye Zhibiao1,Grierson Donald2,Xu Wei3,Zhang Yuyang14

Affiliation:

1. Huazhong Agricultural University National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Science, , Wuhan 430070, China

2. Plant Sciences Division, School of Biosciences, University of Nottingham , Sutton Bonington Campus, Loughborough LE12 5RD, UK

3. Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture , Shihezi University, Shihezi 832003, Xinjiang, China

4. Hubei Hongshan Laboratory , Wuhan 430070, China

Abstract

AbstractDomestication and improvement are important processes that generate the variation in genome and phonotypes underlying crop improvement. Unfortunately, during selection for certain attributes, other valuable traits may be inadvertently discarded. One example is the decline in fruit soluble solids content (SSC) during tomato breeding. Several genetic loci for SSC have been identified, but few reports on the underlying mechanisms are available. In this study we performed a genome-wide association study (GWAS) for SSC of the red-ripe fruits in a population consisting of 481 tomato accessions with large natural variations and found a new quantitative trait locus, STP1, encoding a sugar transporter protein. The causal variation of STP1, a 21-bp InDel located in the promoter region 1124 bp upstream of the start codon, alters its expression. STP1Insertion accessions with an 21-bp insertion have higher SSC than STP1Deletion accessions with the 21-bp deletion. Knockout of STP1 in TS-23 with high SSC using CRISPR/Cas9 greatly decreased SSC in fruits. In vivo and in vitro assays demonstrated that ZAT10-LIKE, a zinc finger protein transcription factor (ZFP TF), can specifically bind to the promoter of STP1Insertion to enhance STP1 expression, but not to the promoter of STP1Deletion, leading to lower fruit SSC in modern tomatoes. Diversity analysis revealed that STP1 was selected during tomato improvement. Taking these results together, we identified a naturally occurring causal variation underlying SSC in tomato, and a new role for ZFP TFs in regulating sugar transporters. The findings enrich our understanding of tomato evolution and domestication, and provide a genetic basis for genome design for improving fruit taste.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3