Discovery and genome-guided mapping of REN12 from Vitis amurensis, conferring strong, rapid resistance to grapevine powdery mildew

Author:

Sapkota Surya1,Zou Cheng2,Ledbetter Craig3,Underhill Anna4,Sun Qi2,Gadoury David1,Cadle-Davidson Lance14

Affiliation:

1. Cornell University School of Integrative Plant Science, Cornell AgriTech, , Geneva, NY, 14456, USA

2. Institute of Biotechnology, Cornell University BRC Bioinformatics Facility, , Ithaca, NY, 14853, USA

3. United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center , Parlier, CA, 93648, USA

4. USDA-ARS, Grape Genetics Research Unit , Geneva, NY, 14456, USA

Abstract

Abstract Powdery mildew resistance genes restrict infection attempts at different stages of pathogenesis. Here, a strong and rapid powdery mildew resistance phenotype was discovered from Vitis amurensis ‘PI 588631’ that rapidly stopped over 97% of Erysiphe necator conidia, before or immediately after emergence of a secondary hypha from appressoria. This resistance was effective across multiple years of vineyard evaluation on leaves, stems, rachises, and fruit and against a diverse array of E. necator laboratory isolates. Using core genome rhAmpSeq markers, resistance mapped to a single dominant locus (here named REN12) on chromosome 13 near 22.8–27.0 Mb, irrespective of tissue type, explaining up to 86.9% of the phenotypic variation observed on leaves. Shotgun sequencing of recombinant vines using skim-seq technology enabled the locus to be further resolved to a 780 kb region, from 25.15 to 25.93 Mb. RNASeq analysis indicated the allele-specific expression of four resistance genes (NLRs) from the resistant parent. REN12 is one of the strongest powdery mildew resistance loci in grapevine yet documented, and the rhAmpSeq sequences presented here can be directly used for marker-assisted selection or converted to other genotyping platforms. While no virulent isolates were identified among the genetically diverse isolates and wild populations of E. necator tested here, NLR loci like REN12 are often race-specific. Thus, stacking of multiple resistance genes and minimal use of fungicides should enhance the durability of resistance and could enable a 90% reduction in fungicides in low-rainfall climates where few other pathogens attack the foliage or fruit.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3