Pan-genome and transcriptome analyses provide insights into genomic variation and differential gene expression profiles related to disease resistance and fatty acid biosynthesis in eastern black walnut (Juglans nigra)

Author:

Zhou Huijuan123,Yan Feng2,Hao Fan1,Ye Hang2,Yue Ming23,Woeste Keith4,Zhao Peng2ORCID,Zhang Shuoxin1

Affiliation:

1. Northwest A&F University College of Forestry, , Yangling, Shaanxi 712100, China

2. College of Life Sciences, Northwest University Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, , Xi’an, Shaanxi 710069, China

3. Xi’an Botanical Garden of Shaanxi Province , Xi’an, Shaanxi 710061, China

4. Purdue University USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, , 715 West State Street, West Lafayette, Indiana, 47907, USA

Abstract

AbstractWalnut (Juglans) species are used as nut crops worldwide. Eastern black walnut (EBW, Juglans nigra), a diploid, horticultural important woody species is native to much of eastern North America. Although it is highly valued for its wood and nut, there are few resources for understanding EBW genetics. Here, we present a high-quality genome assembly of J. nigra based on Illumina, Pacbio, and Hi-C technologies. The genome size was 540.8 Mb, with a scaffold N50 size of 35.1 Mb, and 99.0% of the assembly was anchored to 16 chromosomes. Using this genome as a reference, the resequencing of 74 accessions revealed the effective population size of J. nigra declined during the glacial maximum. A single whole-genome duplication event was identified in the J. nigra genome. Large syntenic blocks among J. nigra, Juglans regia, and Juglans microcarpa predominated, but inversions of more than 600 kb were identified. By comparing the EBW genome with those of J. regia and J. microcarpa, we detected InDel sizes of 34.9 Mb in J. regia and 18.3 Mb in J. microcarpa, respectively. Transcriptomic analysis of differentially expressed genes identified five presumed NBS-LRR (NUCLEOTIDE BINDING SITE-LEUCINE-RICH REPEAT) genes were upregulated during the development of walnut husks and shells compared to developing embryos. We also identified candidate genes with essential roles in seed oil synthesis, including FAD (FATTY ACID DESATURASE) and OLE (OLEOSIN). Our work advances the understanding of fatty acid bioaccumulation and disease resistance in nut crops, and also provides an essential resource for conducting genomics-enabled breeding in walnut.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3