Haplotype resolved chromosome level genome assembly of Citrus australis reveals disease resistance and other citrus specific genes

Author:

Nakandala Upuli12,Masouleh Ardashir Kharabian12,Smith Malcolm W3,Furtado Agnelo12,Mason Patrick12,Constantin Lena12,Henry Robert J12

Affiliation:

1. University of Queensland Queensland Alliance for Agriculture and Food Innovation, , Brisbane 4072, Australia

2. University of Queensland ARC Centre of Excellence for Plant Success in Nature and Agriculture, , Brisbane 4072, Australia

3. Bundaberg Research Station Department of Agriculture and Fisheries, , Bundaberg, Queensland 4670, Australia

Abstract

ABSTRACT Recent advances in genome sequencing and assembly techniques have made it possible to achieve chromosome level reference genomes for citrus. Relatively few genomes have been anchored at the chromosome level and/or are haplotype phased, with the available genomes of varying accuracy and completeness. We now report a phased high-quality chromosome level genome assembly for an Australian native citrus species; Citrus australis (round lime) using highly accurate PacBio HiFi long reads, complemented with Hi-C scaffolding. Hifiasm with Hi-C integrated assembly resulted in a 331 Mb genome of C. australis with two haplotypes of nine pseudochromosomes with an N50 of 36.3 Mb and 98.8% genome assembly completeness (BUSCO). Repeat analysis showed that more than 50% of the genome contained interspersed repeats. Among them, LTR elements were the predominant type (21.0%), of which LTR Gypsy (9.8%) and LTR copia (7.7%) elements were the most abundant repeats. A total of 29 464 genes and 32 009 transcripts were identified in the genome. Of these, 28 222 CDS (25 753 genes) had BLAST hits and 21 401 CDS (75.8%) were annotated with at least one GO term. Citrus specific genes for antimicrobial peptides, defense, volatile compounds and acidity regulation were identified. The synteny analysis showed conserved regions between the two haplotypes with some structural variations in Chromosomes 2, 4, 7 and 8. This chromosome scale, and haplotype resolved C. australis genome will facilitate the study of important genes for citrus breeding and will also allow the enhanced definition of the evolutionary relationships between wild and domesticated citrus species.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference60 articles.

1. Citrus Fruits

2. The leaf oils of the Australian species of citrus (Rutaceae);Brophy;J Essent Oil Res,2001

3. Citrus australis

4. Long-term field evaluation reveals Huanglongbing resistance in citrus relatives;Ramadugu;Plant Dis,2016

5. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus;Bové;J Plant Pathol,2006

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3