The first chromosome-level Fallopia multiflora genome assembly provides insights into stilbene biosynthesis

Author:

Zhao Yujiao12,Yang Zhengyang1,Zhang Zhongren3,Yin Minzhen1,Chu Shanshan12,Tong Zhenzhen1,Qin Yuejian1,Zha Liangping12,Fang Qingying12,Yuan Yuan4,Huang Luqi4,Peng Huasheng145

Affiliation:

1. Anhui University of Chinese Medicine School of Pharmacy, , Hefei 230012, China

2. Anhui Province Key Laboratory of Research & Development of Chinese Medicine , Hefei 230012, China

3. Novogene Bioinformatics Institute , Beijing 301700, China

4. China Academy of Chinese Medical Sciences National Resource Center for Chinese Materia Medica, , Beijing 100700, China

5. Chinese Academy of Medical Sciences, 2019RU57 Research Unit of DAO-DI Herbs, , Beijing 100700, China

Abstract

Abstract Fallopia multiflora (Thunb.) Harald, a vine belonging to the Polygonaceae family, is used in traditional medicine. The stilbenes contained in it have significant pharmacological activities in anti-oxidation and anti-aging. This study describes the assembly of the F. multiflora genome and presents its chromosome-level genome sequence containing 1.46 gigabases of data (with a contig N50 of 1.97 megabases), 1.44 gigabases of which was assigned to 11 pseudochromosomes. Comparative genomics confirmed that F. multiflora shared a whole-genome duplication event with Tartary buckwheat and then underwent different transposon evolution after separation. Combining genomics, transcriptomics, and metabolomics data to map a network of associated genes and metabolites, we identified two FmRS genes responsible for the catalysis of one molecule of p-coumaroyl-CoA and three molecules of malonyl-CoA to resveratrol in F. multiflora. These findings not only serve as the basis for revealing the stilbene biosynthetic pathway but will also contribute to the development of tools for increasing the production of bioactive stilbenes through molecular breeding in plants or metabolic engineering in microbes. Moreover, the reference genome of F. multiflora is a useful addition to the genomes of the Polygonaceae family.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3