CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage (Brassica rapa)

Author:

Lee Ye-Rin1,Siddique Muhammad Irfan2,Kim Do-Sun1,Lee Eun Su1,Han Koeun1,Kim Sang-Gyu3,Lee Hye-Eun1

Affiliation:

1. National Institute of Horticultural and Herbal Science Vegetable Research Division, , Rural Development Administration, Wanju, 55365, Republic of Korea

2. North Carolina State University Mountain Horticultural Crops Research Department of Horticultural Sciences, , Extension Center 455 Research Drive, Mills River, NC 28759, USA

3. Korea Advanced Institute for Science and Technology Department of Biological Sciences, , Daejeon, 34141, Republic of Korea

Abstract

Abstract Genome editing approaches, particularly the CRISPR/Cas9 technology, are becoming state-of-the-art for trait development in numerous breeding programs. Significant advances in improving plant traits are enabled by this influential tool, especially for disease resistance, compared to traditional breeding. One of the potyviruses, the turnip mosaic virus (TuMV), is the most widespread and damaging virus that infects Brassica spp. worldwide. We generated the targeted mutation at the eIF(iso)4E gene in the TuMV-susceptible cultivar “Seoul” using CRISPR/Cas9 to develop TuMV-resistant Chinese cabbage. We detected several heritable indel mutations in the edited T0 plants and developed T1 through generational progression. It was indicated in the sequence analysis of the eIF(iso)4E-edited T1 plants that the mutations were transferred to succeeding generations. These edited T1 plants conferred resistance to TuMV. It was shown with ELISA analysis the lack of accumulation of viral particles. Furthermore, we found a strong negative correlation (r = −0.938) between TuMV resistance and the genome editing frequency of eIF(iso)4E. Consequently, it was revealed in this study that CRISPR/Cas9 technique can expedite the breeding process to improve traits in Chinese cabbage plants.

Funder

Cooperative Research Program for Agriculture Science and Technology Development

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3