CsXDH1 gene promotes caffeine catabolism induced by continuous strong light in tea plant

Author:

Tang Qianhui1234,Liu Keyi1234,Yue Chuan1234,Luo Liyong1234,Zeng Liang1234,Wu Zhijun1234

Affiliation:

1. Southwest University College of Food Science, , Chongqing 400715, China

2. Southwest University Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, , Chongqing 400715, China

3. Southwest University Integrative Science Center of Germplasm Creation, , Chongqing 401329, China

4. Southwest University Tea Research Institute, , Chongqing 400715, China

Abstract

Abstract Tea plant (Camellia sinensis) is an important cash crop with extensive adaptability in the world. However, complex environmental factors force a large variation of tea quality-related components. Caffeine is essential for the formation of bitter and fresh flavors in tea, and is the main compound of tea that improves human alertness. Continuous strong light stimulation was observed to cause caffeine reduction in tea leaves, but the mechanism is not clear. In this study, the response of tea plant to light intensity was analysed mainly by multi-omics association, antisense oligodeoxynucleotide (asODN) silencing technique, and in vitro enzyme activity assay. The results revealed multiple strategies for light intensity adaptation in tea plant, among which the regulation of chloroplasts, photosynthesis, porphyrin metabolism, and resistance to oxidative stress were prominent. Caffeine catabolism was enhanced in continuous strong light, which may be a light-adapted strategy due to strict regulation by xanthine dehydrogenase (XDH). asODN silencing and enzymatic activity assays confirmed that CsXDH1 is a protein induced by light intensity to catalyze the substrate xanthine. CsXDH1 asODN silencing resulted in significant up-regulation of both caffeine and theobromine in in vitro enzyme activity assay, but not in vivo. CsXDH1 may act as a coordinator in light intensity adaptation, thus disrupting this balance of caffeine catabolism.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3