Effects of copper, zinc, and manganese source and inclusion during late gestation on beef cow–calf performance, mineral transfer, and metabolism

Author:

Stephenson Emma L1,Rathert-Williams Abigail R1ORCID,Kenny Ann L1,Nagy Dusty W2,Shoemake Brian M2ORCID,McFadden Thomas B1ORCID,Tucker Heather A3,Meyer Allison M1ORCID

Affiliation:

1. Division of Animal Sciences, University of Missouri , Columbia, MO 65211 , USA

2. School of Veterinary Medicine & Biomedical Sciences, Texas A&M University , College Station, TX 77843 , USA

3. Novus International, Inc. , St. Charles, MO 63304 , USA

Abstract

Abstract To determine effects of Cu, Zn, and Mn source and inclusion during late gestation, multiparous beef cows [n = 48; 649 ± 80 kg body weight (BW); 5.3 ± 0.5 body condition score (BCS)] were individually-fed hay and supplement to meet or exceed all nutrient recommendations except Cu, Zn, and Mn. From 91.2 ± 6.2 d pre-calving to 11.0 ± 3.2 d post-calving, cows received: no additional Cu, Zn, or Mn (control, CON), sulfate-based Cu, Zn, and Mn (inorganic, ITM) or metal methionine hydroxy analogue chelates (MMHAC) of Cu, Zn, and Mn at 133% recommendations, or a combination of inorganic and chelated Cu, Zn, and Mn (reduce and replace, RR) to meet 100% of recommendations. Data were analyzed with treatment and breeding group (and calf sex if P < 0.25 for offspring measures) as fixed effects, animal as experimental unit, and sampling time as a repeated effect for serum, plasma, and milk measures over time. Post-calving cow liver Cu was greater (P ≤ 0.07) in MMHAC compared with all other treatments. Calves born to RR had greater (P ≤ 0.05) liver Cu than ITM and CON, and MMHAC had greater (P = 0.06) liver Cu than CON. Liver Mn was less (P ≤ 0.08) for RR calves than all other treatments. Calf plasma Zn was maintained (P ≥ 0.15) from 0 to 48 h of age in ITM and MMHAC but decreased (P ≤ 0.03) in CON and RR. Gestational cow BW, BCS, and metabolites were not affected (P ≥ 0.13) by treatment, but gestational serum thiobarbituric acid reactive substances (TBARS) were greater (P = 0.01) for CON than MMHAC. Treatment did not affect (P ≥ 0.13) calf birth size, vigor, placental size and minerals, or transfer of passive immunity. Neonatal calf serum Ca was greater (P ≤ 0.05) for MMHAC than all other treatments; other calf serum chemistry and plasma cortisol were not affected (P ≥ 0.12). Pre-suckling colostrum yield, and lactose concentration and content, were greater (P ≤ 0.06) for MMHAC compared with ITM and RR. Colostral triglyceride and protein concentrations were greater (P ≤ 0.08) for RR than MMHAC and CON. Cow lactational BW and BCS, milk yield and composition, and pre-weaning calf BW and metabolism were not affected (P ≥ 0.13) by treatment. Lactational serum TBARS were greater (P = 0.04) for RR than CON at day 35 and greater (P ≤ 0.09) for MMHAC at day 60 than all other treatments. Source and inclusion of Cu, Zn, and Mn altered maternal and neonatal calf mineral status, but calf size and vigor at birth, passive transfer, and pre-weaning growth were not affected in this study.

Funder

Novus International

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3