Estimating body weight and body condition score of mature beef cows using depth images

Author:

Xiong Yijie12ORCID,Condotta Isabella C F S3,Musgrave Jacki A4,Brown-Brandl Tami M2ORCID,Mulliniks J Travis14ORCID

Affiliation:

1. Department of Animal Science, University of Nebraska-Lincoln , Lincoln, NE 68583 , USA

2. Department of Biological Systems Engineering, University of Nebraska-Lincoln , Lincoln, NE 68583 , USA

3. Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL 61801 , USA

4. West Central Research and Extension Center, University of Nebraska-Lincoln , North Platte, NE 69101 , USA

Abstract

Abstract Obtaining accurate body weight (BW) is crucial for management decisions yet can be a challenge for cow–calf producers. Fast-evolving technologies such as depth sensing have been identified as low-cost sensors for agricultural applications but have not been widely validated for U.S. beef cattle. This study aimed to (1) estimate the body volume of mature beef cows from depth images, (2) quantify BW and metabolic weight (MBW) from image-projected body volume, and (3) classify body condition scores (BCS) from image-obtained measurements using a machine-learning-based approach. Fifty-eight crossbred cows with a mean BW of 410.0 ± 60.3 kg and were between 4 and 6 yr of age were used for data collection between May and December 2021. A low-cost, commercially available depth sensor was used to collect top-view depth images. Images were processed to obtain cattle biometric measurements, including MBW, body length, average height, maximum body width, dorsal area, and projected body volume. The dataset was partitioned into training and testing datasets using an 80%:20% ratio. Using the training dataset, linear regression models were developed between image-projected body volume and BW measurements. Results were used to test BW predictions for the testing dataset. A machine-learning-based multivariate analysis was performed with 29 algorithms from eight classifiers to classify BCS using multiple inputs conveniently obtained from the cows and the depth images. A feature selection algorithm was performed to rank the relevance of each input to the BCS. Results demonstrated a strong positive correlation between the image-projected cow body volume and the measured BW (r = 0.9166). The regression between the cow body volume and the measured BW had a co-efficient of determination (R2) of 0.83 and a 19.2 ± 13.50 kg mean absolute error (MAE) of prediction. When applying the regression to the testing dataset, an increase in the MAE of the predicted BW (22.7 ± 13.44 kg) but a slightly improved R2 (0.8661) was noted. Among all algorithms, the Bagged Tree model in the Ensemble class had the best performance and was used to classify BCS. Classification results demonstrate the model failed to predict any BCS lower than 4.5, while it accurately classified the BCS with a true prediction rate of 60%, 63.6%, and 50% for BCS between 4.75 and 5, 5.25 and 5.5, and 5.75 and 6, respectively. This study validated using depth imaging to accurately predict BW and classify BCS of U.S. beef cow herds.

Funder

University of Nebraska-Lincoln

Nebraska Agricultural Experiment Station

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Reference72 articles.

1. Revisiting linear discriminant techniques in gender recognition;Bekios-Calfa;IEEE Trans. Pattern Anal. Mach. Intell,2010

2. Potential for estimation of body condition scores in dairy cattle from digital images;Bewley;J. Dairy Sci,2008

3. Computer vision system for measuring individual cow feed intake using rgb-d camera and deep learning algorithms;Bezen;Comp. Electron. Agric,2020

4. A review on support vector machine for data classification;Bhavsar;Int. J. Adv. Res. Comp. Eng. Technol,2012

5. Optimal beef cow weights in the US Southern Plains;Bir,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3