Affiliation:
1. Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research , College Station, TX 77843 , USA
2. Alltech Inc. , Nicholasville, KY 40356 , USA
Abstract
Abstract
Maintenance of mitochondrial health, which is supported in part by dietary antioxidants such as selenium (Se) and vitamin E (vitE), is pertinent to optimizing athletic performance. Deficiencies in Se and vitE negatively impact muscle health but mitochondrial adaptations to various levels of dietary Se and vitE are poorly understood. Young Quarter Horses (mean ± SD: 17.6 ± 0.9 mo) undergoing submaximal exercise training were used to test the hypothesis that a proprietary antioxidant blend containing elevated Se yeast (EconomasE, Alltech, Inc., Nicholasville, KY) would improve mitochondrial characteristics compared to Se at current requirements, even with reduced vitE intake. Horses were balanced by age, sex, body weight (BW), and farm of origin and randomly assigned to one of three custom-formulated concentrates fed at 1% BW (dry matter, DM basis) for 12 wk: 1) 100 IU vitE/kg DM and 0.1 mg Se/kg DM (CON, n = 6); 2) no added vitE plus EconomasE to provide 0.1 mg Se/kg DM (ESe1, n = 6); or 3) no added vitE plus EconomasE to provide 0.3 mg Se/kg DM (ESe3, n = 6). Samples collected at week 0 and 12 were analyzed for serum Se and middle gluteal glutathione peroxidase (GPx) and mitochondrial enzyme activities by kinetic colorimetry and mitochondrial capacities by high-resolution respirometry. Data were analyzed using mixed linear models in SAS v9.4 with repeated measures (time) and fixed effects of time, diet, and time × diet; horse(diet) served as a random effect. Serum Se tended to increase in all horses by week 12 (P = 0.08) but was unaffected by diet. Muscle GPx activity remained similar among all horses throughout the duration of the study. Mitochondrial volume density (citrate synthase [CS] activity), integrative function (cytochrome c oxidase [CCO] activity per mg protein), and integrative (per mg tissue) oxidative (P) and electron transfer (E) capacities increased from week 0 to 12 in all horses (P ≤ 0.01). Intrinsic (relative to CS) CCO activity decreased in all horses (P = 0.001), while intrinsic P and E capacities decreased only in ESe1 horses from week 0 to 12 (P ≤ 0.002). These results suggest that feeding EconomasE to provide 0.3 mg Se/kg DM may prevent adverse effects of removing 100 IU dietary vitE/kg DM on mitochondria in young horses. More research is needed to determine optimal dietary Se and vitE levels in performance horses to maximize mitochondrial energy production.
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science
Reference45 articles.
1. Effect of vitamin E and selenium on resistance to oxidative stress in chicken superficial pectoralis muscle;Avanzo;Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol,2001
2. Influence of vitamin E and selenium supplement on antibody production in horses;Baalsrud;Equine Vet. J,1986
3. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen;Boveris;Biochem. J,1973
4. Selenium, oxidative stress, and health aspects;Brenneisen;Mol. Aspects Med,2005
5. Vitamin E: function and metabolism;Brigelius-Flohé;FASEB J,1999
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献