Effects of a Saccharomyces cerevisiae fermentation product-supplemented diet on fecal characteristics, oxidative stress, and blood gene expression of adult dogs undergoing transport stress

Author:

Wilson Sofia M1,Oba Patricia M1ORCID,Applegate Catherine C12,Koziol Samantha A1,Panasevich Matthew R3,Norton Sharon A4,Swanson Kelly S156ORCID

Affiliation:

1. Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL 61801 , USA

2. The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, IL 61801 , USA

3. Blue Buffalo Co. Ltd , Wilton, CT 06897 , USA

4. Cargill, Inc. , Wayzata, MN 55391 , USA

5. Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, IL 61801 , USA

6. Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, IL 61801 , USA

Abstract

Abstract Previously, a Saccharomyces cerevisiae fermentation product (SCFP) was shown to positively alter fecal microbiota, fecal metabolites, oxidative stress, and circulating immune cell function of adult dogs. The objective of this study was to measure the effects of SCFP on fecal characteristics, serum oxidative stress biomarkers, and whole blood gene expression of dogs undergoing transport stress. Sixteen adult pointer dogs [8M, 8F; mean age = 6.7 ± 2.1 yr; mean body weight (BW) = 25.5 ± 3.9 kg] were used in a randomized crossover design study. All dogs were fed a control diet for 4 wk, then randomly assigned to a control or SCFP-supplemented diet (formulated to include approximately 0.13% of the active SCFP ingredient) and fed to maintain BW for 11 wk. A 6-wk washout preceded the second 11-wk experimental period with dogs receiving opposite treatments. After 11 wk, fresh fecal and blood samples were collected before and after transport in a van for 45 min. Change from baseline data (i.e., before and after transport) were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. Change in serum malondialdehyde concentrations increased (P < 0.05) and serum 8-isoprostane concentrations tended to increase (P < 0.10) in dogs fed SCFP, but decreased (P < 0.05) in control dogs after transport. Other serum markers were unaffected by diet during transport stress. Fecal dry matter percentage tended to be affected (P < 0.10) by diet during transport stress, being reduced in control dogs, but stable in dogs fed SCFP. Other fecal characteristics were unaffected by diet during transport stress. Genes associated with activation of innate immunity were impacted by diet in response to transport stress, with blood cyclooxygenase-2 and malondialdehyde mRNA expression being increased (P < 0.05) in control dogs, but stable or decreased in dogs fed SCFP. Expression of other genes was unaffected by diet during transport stress. These data suggest that the benefits of feeding a SCFP during transport stress may be mediated through suppression of innate immune cell activation.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference69 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3