Identification of functional single nucleotide polymorphisms in the porcine SLC6A4 gene associated with aggressive behavior in weaned pigs after mixing

Author:

Guo Yanli1,Zhao Jing1,Xu Qinglei1,Gao Siyuan1,Liu Mingzheng1,Zhang Chunlei1,Schinckel Allan P2ORCID,Zhou Bo1ORCID

Affiliation:

1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

2. Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA

Abstract

Abstract Variation in genes of the serotonergic system influences aggressive behavior by affecting serotonin levels in the central and cortical nervous system. SLC6A4 (serotonin transporter) is a master regulator of 5-HT signaling and involved in the regulation of aggressive behavior in humans and rodents. To identify potential functional single nucleotide polymorphisms (SNPs) for the porcine SLC6A4 gene associated with aggressive behavior, a total of 500 pigs (268 barrows and 232 gilts) were selected and mixed in 51 pens. Their behavior was recorded and observed for 72 h after mixing. Based on a composite aggressive score (CAS), the most aggressive and the least aggressive pigs within each pen were selected separately (a total of 204 pigs). Ear tissue was sampled to extract genomic DNA. Eight SNPs in the 5ʹ-flanking region, coding region, and 3ʹ-untranslated region (3ʹ-UTR) of SLC6A4 were genotyped, of which 6 SNPs had significant differences (P < 0.05) in allele frequency between the most aggressive and least aggressive pigs. Luciferase activity was greater in plasmids of genotype GG than plasmids of genotype CC of rs345058216 (P < 0.01). Computational analysis nominated MAZ as putative transcription factor (TF) with higher probability to bind the SLC6A4 promoter at the SNP (rs345058216) site. Also, we demonstrated that MAZ overexpression modulates SLC6A4 promoter activity in allele-specific manner with an in vitro assay. In addition, we demonstrated that SLC6A4 was a direct target of miR-671-5p. The dual luciferase reporter gene assay and cell transfection were performed to examine the role of miR-671-5p in regulating SLC6A4 expression. The luciferase assays revealed that the SNP rs332335871 affects regulation of miR-671-5p in SLC6A4 expression. After overexpression of miR-671-5p in porcine primary neural cells, the SLC6A4 mRNA levels can be significantly reduced. In conclusion, we here found that miR-671-5p and MAZ mediated porcine SLC6A4 expression level, which provides the possible molecular mechanism of aggressive behavior.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3