Astragalus polysaccharide mitigates transport stress-induced hepatic metabolic stress via improving hepatic glucolipid metabolism in chicks

Author:

Zhao Bi-Chen1ORCID,Tang Yi-Xi1,Qiu Bai-Hao1,Xu Hao-Liang1,Wang Tian-Hao1,Elsherbeni Ahmed Ibrahim Ahmed2,Gharib Hassan Bayoumi Ali3,Li Jin-Long145ORCID

Affiliation:

1. College of Veterinary Medicine, Northeast Agricultural University , Harbin 150030 , P.R. China

2. Animal Production Research Institute, Agricultural Research Centre , Giza , Egypt

3. Animal Production Department, Faculty of Agriculture, Cairo University , Cairo , Egypt

4. Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University , Harbin 150030 , P.R. China

5. Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University , Harbin 150030 , P.R. China

Abstract

Abstract In the modern poultry industry, newly hatched chicks are unavoidably transported from the hatching to the rearing foster. Stress caused by multiple physical and psychological stressors during transportation is particularly harmful to the liver. Astragalus polysaccharide (APS) possesses multiple benefits against hepatic metabolic disorders. Given that transport stress could disturb hepatic glucolipid metabolism and the role of APS in metabolic regulation, we speculated that APS could antagonize transport stress-induced disorder of hepatic glucolipid metabolism. Firstly, newly hatched chicks were transported for 0, 2, 4, and 8 h, respectively. Subsequently, to further investigate the effects of APS on transport stress-induced hepatic glucolipid metabolism disturbance, chicks were pretreated with water or APS and then subjected to transport treatment. Our study suggested that APS could relieve transport stress-induced lipid deposition in liver. Meanwhile, transport stress also induced disturbances in glucose metabolism, reflected by augmented mRNA expression of key molecules in gluconeogenesis and glycogenolysis. Surprisingly, APS could simultaneously alleviate these alterations via peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)/Sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) pathway. Moreover, APS treatment regulated the level of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ), thereby alleviating transport stress-induced alterations of VLDL synthesis, cholesterol metabolism, lipid oxidation, synthesis, and transport-related molecules. These findings indicated that APS could prevent the potential against transport stress-induced hepatic glucolipid metabolism disorders via PGC-1α/SIRT1/AMPK/PPARα/PPARγ signaling system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

China Agriculture Research System of MOF and MARA

Distinguished Professor of Long jiang Scholars Support Project

Heilongjiang Tou yan Innovation Team Program

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3