Form of dietary selenium affects mRNA encoding cholesterol biosynthesis and immune response elements in the early luteal phase bovine corpus luteum

Author:

Crites Benjamin R1,Carr Sarah N1,Matthews James C1,Bridges Phillip J1

Affiliation:

1. Department of Animal and Food Sciences, University of Kentucky , Lexington, KY 40546 , USA

Abstract

Abstract Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) progesterone (P4) above that in cows on ISe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effect of form of Se on the transcriptome of the early LP corpus luteum (CL) with the goal of elucidating form of Se-regulated processes affecting luteal steroidogenesis and function. Non-lactating, 3-yr-old Angus-cross cows underwent 45-d Se-depletion, then repletion periods, and then at least 90 d of supplementation (TRT) with 35 ppm Se/d as either ISe (n = 5) or MIX (n = 5). CL were then recovered on day 7 of the estrous cycle, total RNA isolated, and the effect of TRT on the luteal transcriptome evaluated using bovine gene 1.0 ST arrays (Affymetrix, Inc., Santa Clara, CA). The abundance of transcripts in each CL was subjected to one-way ANOVA using Partek Genomic Suite software to determine TRT effects. Microarray analysis indicated a total of 887 transcripts that were differentially expressed and functionally annotated, with 423 and 464 up- and down-regulated (P < 0.05) in MIX vs. ISe CL, respectively. Bioinformatic analysis (Ingenuity Pathway Analysis) revealed the top TRT-affected canonical pathways to include seven specific to cholesterol biosynthesis and two to inflammatory responses. Results from the microarray analysis were corroborated by targeted real-time PCR. MIX CL had increased (P < 0.05) abundance of transcripts regulating cholesterol biosynthesis including DHCR7, DHCR24, and CYP51A1 (fold changes of 1.65, 1.48, and 1.40, respectively), suggesting MIX-induced increases in P4 to be due, in part, to increased availability of substrate to luteal cells. In addition, MIX CL had increased (P < 0.05) abundance of immune-response transcripts including C1QC, FAS, ILR8B, and IL1R1 (fold changes of 2.30, 1.74, 1.66, and 1.63, respectively). SREBF1 mRNA was also increased (1.32-fold, P < 0.05) in the MIX CL, which increases cholesterol synthesis and stimulates IL1B, linking effects of form of supplemental Se (TRT) on cholesterol biosynthesis and immune function in the CL.

Funder

Agriculture and Food Research Initiative Competitive

National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3