Affiliation:
1. Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia , Murcia 30100 , Spain
2. Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Linköping University , Linköping 58225 , Sweden
3. Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA) , Madrid 28006 , Spain
Abstract
Abstract
The combination of estrus synchronization and superovulation treatments introduces molecular modifications whose effects are yet to be disclosed. Here, reproductive parameters and gene expression changes in ovaries and endometrium were explored on day 6 after artificial insemination (AI), when synthetic progestin altrenogest (ALT) was combined with gonadotropins. Sows were administered ALT for 7 d beginning on the day of weaning and superovulated with equine chorionic gonadotropin (eCG) 24 h later and human chorionic gonadotropins (hCG) at the onset of estrus (SS-7 group; n = 6). The controls were either superovulated sows with eCG 24 h postweaning and hCG at the onset of estrus (SC group; n = 6) or sows with postweaning spontaneous estrus (NC group; n = 6). Ovary examination and embryo and tissue collection were performed in all sows via laparotomy on day 6 post-AI. RNA-Seq was conducted to analyze differentially expressed genes (DEGs) between groups. Statistical analysis of the reproductive parameters was conducted with ANOVA and Tukey post hoc tests. DEGs were analyzed with an ANOVA (fold changes ≥2 or ≤2, P value <0.05). Hormonal treatments almost doubled (P < 0.03) the number of corpora lutea (39.8 ± 10.2 and 38.3 ± 11.1 in SS-7 and SC sows, respectively) compared with that in the NC group (23.1 ± 3.8). In contrast, embryo viability significantly decreased (P < 0.003) in response to SS-7 treatment (75.1% ± 15.2%) compared to SC and NC groups (93.8 ± 7.6% and 91.8 ± 6.9%, respectively). RNA-Seq analyses revealed 675 and 1,583 DEGs in the SS-7 group compared to both SC and NC groups in endometrial and ovarian samples, respectively. Interestingly, many genes with key roles in the Wnt/β-catenin and Notch signaling pathways were differentially expressed in SS-7 sows relative to SC and NC groups (e.g., Ctnnb1, Myc, Gli3, Scyl2, Ccny, Daam1, Ppm1n, Rbpj, and Usp8). A key finding in this study was the downregulation of β-catenin (Ctnnb1) gene expression in the SS-7 endometrium, suggesting that this treatment influences embryo–uterine dialogue by triggering a cascade of events leading to embryo maldevelopment. These data explain the proliferative defects in SS-7 embryos and suggest a novel mechanism of a porcine embryo–maternal crosstalk.
Funder
Ministerio de Ciencia e Inovación
Agencia Estatal de Investigación
European Regional Development Fund
Seneca Foundation
Grupo de Excelencia de la Región de Murcia
Swedish Research Council
Publisher
Oxford University Press (OUP)
Subject
Genetics,Animal Science and Zoology,General Medicine,Food Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献