Exploring methods to summarize gut microbiota composition for microbiability estimation and phenotypic prediction in swine

Author:

He Yuqing1,Tiezzi Francesco12,Jiang Jicai1,Howard Jeremy3,Huang Yijian3,Gray Kent3,Choi Jung-Woo4,Maltecca Christian1ORCID

Affiliation:

1. Department of Animal Science, North Carolina State University , Raleigh, NC 27607 , USA

2. Department of Agriculture, Food, Environment and Forestry, University of Florence , Firenze 50144 , Italy

3. Smithfield Premium Genetics , Rose Hill, NC 28458 , USA

4. College of Animal Life Sciences, Division of Animal Resource Science 1 Gangwondaehak-gil , Chuncheon-si, Gangwon-do, 24341 , Republic of Korea

Abstract

Abstract The microbial composition resemblance among individuals in a group can be summarized in a square covariance matrix and fitted in linear models. We investigated eight approaches to create the matrix that quantified the resemblance between animals based on the gut microbiota composition. We aimed to compare the performance of different methods in estimating trait microbiability and predicting growth and body composition traits in three pig breeds. This study included 651 purebred boars from either breed: Duroc (n = 205), Landrace (n = 226), and Large White (n = 220). Growth and body composition traits, including body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content, were measured on live animals at the market weight (156 ± 2.5 d of age). Rectal swabs were taken from each animal at 158 ± 4 d of age and subjected to 16S rRNA gene sequencing. Eight methods were used to create the microbial similarity matrices, including 4 kernel functions (Linear Kernel, LK; Polynomial Kernel, PK; Gaussian Kernel, GK; Arc-cosine Kernel with one hidden layer, AK1), 2 dissimilarity methods (Bray-Curtis, BC; Jaccard, JA), and 2 ordination methods (Metric Multidimensional Scaling, MDS; Detrended Correspondence analysis, DCA). Based on the matrix used, microbiability estimates ranged from 0.07 to 0.21 and 0.12 to 0.53 for Duroc, 0.03 to 0.21 and 0.05 to 0.44 for Landrace, and 0.02 to 0.24 and 0.05 to 0.52 for Large White pigs averaged over traits in the model with sire, pen, and microbiome, and model with the only microbiome, respectively. The GK, JA, BC, and AK1 obtained greater microbiability estimates than the remaining methods across traits and breeds. Predictions were made within each breed group using four-fold cross-validation based on the relatedness of sires in each breed group. The prediction accuracy ranged from 0.03 to 0.18 for BW, 0.08 to 0.31 for BF, 0.21 to 0.48 for LD, and 0.04 to 0.16 for IMF when averaged across breeds. The BC, MDS, LK, and JA achieved better accuracy than other methods in most predictions. Overall, the PK and DCA exhibited the worst performance compared to other microbiability estimation and prediction methods. The current study shows how alternative approaches summarized the resemblance of gut microbiota composition among animals and contributed this information to variance component estimation and phenotypic prediction in swine.

Funder

North Carolina Pork Council

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3