Effect of live yeast supplementation on energy partitioning and ruminal fermentation characteristics of steers fed a grower-type diet in heat-stress conditions

Author:

D’Souza Genevieve M1ORCID,Dias Batista Luiz Fernando1ORCID,Norris Aaron B2ORCID,Tedeschi Luis O1ORCID

Affiliation:

1. Department of Animal Science, Texas A&M University , College Station, TX 77843-2471 , USA

2. Department of Natural Resources Management, Texas Tech University , Lubbock, TX 79409 , USA

Abstract

Abstract The objective of this trial was to determine the influence of live yeast supplementation (LY), environmental condition (ENV), and their interaction (TRT) on energy partitioning, nitrogen metabolism, and ruminal fermentation dynamics of steers receiving a grower-type diet. The effects of LY and ENV were investigated using a 2 × 2 crossover design that spanned five periods. Eight Angus-crossbred steers were randomly split into pairs and housed in four outdoor pens outfitted with an individualized feeding system. Animals were limit-fed a grower diet (DIET) at 1.2% shrunk body weight (SBW) with no live yeast supplementation (NOY) or a grower diet top-dressed with 10 g LY/d for 14 d (1.2 × 1012 CFU/d). On days 13 and 14, animals were subjected to one of two ENV conditions, thermoneutral (TN; 18.4 ± 1.1 °C, 57.6 ± 2.8% relative humidity [RH]) or heat stress (HS; 33.8 ± 0.6 °C, 55.7 ± 2.7% RH), in two side-by-side, single-stall open-circuit, indirect respiration calorimetry chambers. Data were analyzed using a random coefficients model. Carryover effects were examined and removed from the model if not significant. Gross (GE), digestible, metabolizable, heat, and retained energies were not influenced by DIET, ENV, or TRT (P ≥ 0.202). Gaseous energy, as a percentage of GE, tended to increase during HS (P = 0.097). The only carryover effect in the study was for oxygen consumption (P = 0.031), which could be attributed to the tendency of NOY (P = 0.068) to have greater oxygen consumption. DIET, ENV, or TRT (P ≥ 0.154) had no effects on total animal methane or carbon dioxide emissions. Similarly, DIET, ENV, or TRT (P ≥ 0.157) did not affect ruminal pH, redox, protozoa enumeration, ruminal ammonia concentrations, and acetate-to-propionate ratio. Propionate concentrations were the greatest in animals in TN conditions receiving LY (P = 0.034) compared to the other TRT. This effect is mirrored by TN-LY tending to have greater acetate concentrations (P = 0.076) and total VFA concentrations (P = 0.065). Butyrate concentrations tended to be greater for animals fed LY (P = 0.09). There was a tendency for LY to have elevated numbers of Fusobacterium necrophorum (P = 0.053). Although this study lacked effects of LY on energy partitioning, nitrogen metabolism, and some ruminal parameters during HS, further research should be completed to understand if LY is a plausible mitigation technique to enhance beef animals’ performance in tropical and sub-tropical regions of the world.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

Reference79 articles.

1. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle;Alzahal;J. Dairy Sci,2011

2. Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle;Amachawadi;J. Anim. Sci,2016

3. Rumen volatile fatty acids × dietary supplementation with live yeast and yeast cell wall in feedlot beef cattle;Armato;Acta Agriculturae Scandinavica, Section A — Animal Science,2017

4. The impact of short-term acute heat stress on the rumen microbiome of Hanwoo steers;Baek;J. Anim. Sci. Technol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3