Optimization of method for cross-section hydrogels preparation using high-pressure freezing

Author:

Ichihashi Shuichi1,Kuwata Masahiko1,Kikuchi Kodai1,Matsuyama Tatsushi1,Shimizu Akio1

Affiliation:

1. Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University , 1-236 Tangi-cho, Hachioji 192-8577, Japan

Abstract

Abstract High-pressure water freeze fracturing is a method for preparing water-containing samples such as hydrogels for scanning electron microscopy (SEM), in which a sample is placed in a divisible pressure vessel, filled with water, sealed, frozen with liquid nitrogen and then vacuum dried after the vessel is divided. The pressure (∼200 MPa) generated by the phase transition from water to ice is expected to inhibit ice crystal formation that causes large deformation of microstructure in the sample. To maximize the useable sample size, where SEM observation is not affected by ice crystal growth, preparation conditions including the size of pressure vessel were examined in this work. Using pressure vessels 8.0 mm, 5.5 mm and 4.5 mm in diameter, agarose gel, gelatin gel, wheat starch hydrogel, wheat flour noodle and cellulose hydrogel were used to prepare SEM samples. With agarose gel, an area of 3.6 mm in diameter in the 5.5 mm vessel was achieved as the maximum size of the area observable without ice crystal growth. The observable size of other samples was comparable, except for gelatin gel. As a result, observation of the three-dimensional network structure of hydrogels could be performed over a wider range than with the conventional method without shredding or chemical treatment of the samples. Additionally, usability of agarose gel for sample support matrix in high-pressure water freeze fracturing was demonstrated.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3