Insulin protects against type 1 diabetes mellitus-induced ultrastructural abnormalities of pancreatic islet microcirculation

Author:

Wang Bing1,Zhang Xu2,Liu Mingming13ORCID,Li Yuan1,Zhang Jian13,Li Ailing1,Zhang Honggang1,Xiu Ruijuan1

Affiliation:

1. Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China

2. Laboratory of Electron Microscopy, Pathology Center, Peking University First Hospital, Beijing, 100034, China

3. Diabetes Research Center, Chinese Academy of Medical Science, Beijing 100005, China

Abstract

Abstract Pancreatic islet microcirculation, consisting of pancreatic islet microvascular endothelial cells (IMECs) and pericytes (IMPCs), provides crucial support for the physiological function of pancreatic islet. Emerging evidence suggests that pancreatic islet microcirculation is impaired in type 1 diabetes mellitus (T1DM). Here, we investigated the potential ultrastructural protective effects of insulin against streptozotocin (STZ)-induced ultrastructural abnormalities of the pancreatic islet microcirculation in T1DM mouse model. For this purpose, pancreatic tissues were collected from control, STZ-induced T1DM and insulin-treated mice, and a pancreatic IMECs cell line (MS1) was cultured under control, 35 mM glucose with or without 10−8 M insulin conditions. Transmission and scanning electron microscopies were employed to evaluate the ultrastructure of the pancreatic islet microcirculation. We observed ultrastructural damage to IMECs and IMPCs in the type 1 diabetic group, as demonstrated by destruction of the cytoplasmic membrane and organelles (mainly mitochondria), and this damage was substantially reversed by insulin treatment. Furthermore, insulin inhibited collagenous fiber proliferation and alleviated edema of the widened pancreatic islet exocrine interface in T1DM mice. We conclude that insulin protects against T1DM-induced ultrastructural abnormalities of the pancreatic islet microcirculation.

Funder

National Natural Science Foundation of China

Chinese Academy of Medical Science Initiative for Innovative Medicine

Publisher

Oxford University Press (OUP)

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3