Application of machine learning techniques to electron microscopic/spectroscopic image data analysis

Author:

Muto Shunsuke1,Shiga Motoki234

Affiliation:

1. Electron Nanoscopy Division, Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

2. Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan

3. PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan

4. Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

Abstract

Abstract The combination of scanning transmission electron microscopy (STEM) with analytical instruments has become one of the most indispensable analytical tools in materials science. A set of microscopic image/spectral intensities collected from many sampling points in a region of interest, in which multiple physical/chemical components may be spatially and spectrally entangled, could be expected to be a rich source of information about a material. To unfold such an entangled image comprising information and spectral features into its individual pure components would necessitate the use of statistical treatment based on informatics and statistics. These computer-aided schemes or techniques are referred to as multivariate curve resolution, blind source separation or hyperspectral image analysis, depending on their application fields, and are classified as a subset of machine learning. In this review, we introduce non-negative matrix factorization, one of these unfolding techniques, to solve a wide variety of problems associated with the analysis of materials, particularly those related to STEM, electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy. This review, which commences with the description of the basic concept, the advantages and drawbacks of the technique, presents several additional strategies to overcome existing problems and their extensions to more general tensor decomposition schemes for further flexible applications are described.

Funder

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

KIBAN-KENKYU A

Interface Ionics

Grants-in-Aid for Scientific Research on Innovative Areas ‘Nano Informatics’

Publisher

Oxford University Press (OUP)

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3