In situ scanning electron microscopy observations of filler material transport in branched carbon microtubes by Joule heating

Author:

Okada Masaki1,Sasaki Daiya1,Kohno Hideo23

Affiliation:

1. Department of Engineering, Graduate School of Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan

2. School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan

3. Center for Nanotechnology, Research Institute, Kochi University of Technology, Kami, Kochi 782-8502, Japan

Abstract

Abstract Y-branched or side-by-side-branched carbon microtubes with metal filler material were fabricated, and material transport in the branched microtubes with Joule heating was investigated using in situ scanning electron microscopy with micro-electrode probes. When a voltage and electric current were applied, the material enclosed in the microtubes moved from its original position. The movement was not related to the direction of the electric current; therefore, it is concluded that the movement was not due to electromigration, but rather a temperature gradient, volume expansion and increased vapor pressure by Joule heating. In Y-branched microtubes, a part of the metal filler material moved from one branch to another branch, which would be useful for microfluidic flow switching. A cylindrical filler material was also observed to be expelled from a branch while its shape was maintained, and this phenomenon is presumably caused by vaporization-induced high pressure and could find application in micro-mechanical manipulators such as punching needles. In side-by-side-branched carbon microtubes, Joule heating caused thermal volume expansion to fill the spaces in the branches that were initially empty. The microtubes then reverted to a state almost identical to the initial state with empty spaces when the electric current was turned off. These results suggest that thermal volume expansion could be employed for flow switching.

Funder

Kakenhi

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3