Genome Evolution in Plants: Complex Thalloid Liverworts (Marchantiopsida)

Author:

Linde Anna-Malin1,Singh Shilpi2,Bowman John L2,Eklund Magnus1,Cronberg Nils3ORCID,Lagercrantz Ulf1ORCID

Affiliation:

1. Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University , Sweden

2. School of Biological Sciences, Monash University , Melbourne, Victoria , Australia

3. Biodiversity, Department of Biology, Lund University , Sweden

Abstract

AbstractWhy do some genomes stay small and simple, while others become huge, and why are some genomes more stable? In contrast to angiosperms and gymnosperms, liverworts are characterized by small genomes with low variation in size and conserved chromosome numbers. We quantified genome evolution among five Marchantiophyta (liverworts), measuring gene characteristics, transposable element (TE) landscape, collinearity, and sex chromosome evolution that might explain the small size and limited variability of liverwort genomes. No genome duplications were identified among examined liverworts and levels of duplicated genes are low. Among the liverwort species, Lunularia cruciata stands out with a genome size almost twice that of the other liverwort species investigated here, and most of this increased size is due to bursts of Ty3/Gypsy retrotransposons. Intrachromosomal rearrangements between examined liverworts are abundant but occur at a slower rate compared with angiosperms. Most genes on L. cruciata scaffolds have their orthologs on homologous Marchantia polymorpha chromosomes, indicating a low degree of rearrangements between chromosomes. Still, translocation of a fragment of the female U chromosome to an autosome was predicted from our data, which might explain the uniquely small U chromosome in L. cruciata. Low levels of gene duplication, TE activity, and chromosomal rearrangements might contribute to the apparent slow rate of morphological evolution in liverworts.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3