First Whole-Genome Sequence and Flow Cytometry Genome Size Data for the Lichen-Forming FungusRamalina farinacea(Ascomycota)

Author:

Llewellyn Theo123ORCID,Mian Sahr1,Hill Rowena14,Leitch Ilia J1ORCID,Gaya Ester1

Affiliation:

1. Comparative Fungal Biology, Royal Botanic Gardens, Kew , Richmond , United Kingdom

2. Department of Life Sciences, Imperial College London , Ascot, Berkshire , United Kingdom

3. Science and Solutions for a Changing Planet Doctoral Training Partnership, Grantham Institute, Imperial College London , South Kensington, London , United Kingdom

4. School of Biological and Behavioural Sciences, Queen Mary University of London , London , United Kingdom

Abstract

AbstractLichen-forming fungi are a diverse and ecologically important group of obligate mutualistic symbionts. Due to difficulties with maintaining them in culture and their extremely slow growth, lichenologists are increasingly opting for metagenomic sequencing followed by symbiont genome separation using bioinformatic pipelines. However, without knowing the true genome size of the lichen-forming fungus, we cannot quantify the completeness of the genome assembly and the efficacy of the bioinformatic filtering. To address this issue, we report here the first whole-genome assembly for the lichen-forming fungus Ramalina farinacea (L.) Ach. sequenced with Oxford Nanopore long-read technology alongside direct measurements of its genome size using flow cytometry. The assembly showed high contiguity (N50 = 1.55 Mb) and gene set completeness (BUSCO = 95.8%). The highly robust genome size of 33.61 Mb/1C (coefficients of variation = 2.98) that was obtained showed our assembly covered 97% of the entire genome. Our results demonstrate that accurate genome size measurements can be obtained directly from lichen thalli and used to provide a benchmark for assessing true cytometric completeness of metagenome-derived assemblies.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3