Empirical Evidence That Complexity Limits Horizontal Gene Transfer

Author:

Burch Christina LORCID,Romanchuk Artur1,Kelly Michael,Wu Yingfang,Jones Corbin D1

Affiliation:

1. Department of Biology, University of North Carolina , Chapel Hill, North Carolina , USA

Abstract

Abstract Horizontal gene transfer (HGT) is a major contributor to bacterial genome evolution, generating phenotypic diversity, driving the expansion of protein families, and facilitating the evolution of new phenotypes, new metabolic pathways, and new species. Comparative studies of gene gain in bacteria suggest that the frequency with which individual genes successfully undergo HGT varies considerably and may be associated with the number of protein–protein interactions in which the gene participates, that is, its connectivity. Two nonexclusive hypotheses have emerged to explain why transferability should decrease with connectivity: the complexity hypothesis (Jain R, Rivera MC, Lake JA. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 96:3801–3806.) and the balance hypothesis (Papp B, Pál C, Hurst LD. 2003. Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197.). These hypotheses predict that the functional costs of HGT arise from a failure of divergent homologs to make normal protein–protein interactions or from gene misexpression, respectively. Here we describe genome-wide assessments of these hypotheses in which we used 74 existing prokaryotic whole genome shotgun libraries to estimate rates of horizontal transfer of genes from taxonomically diverse prokaryotic donors into Escherichia coli. We show that 1) transferability declines as connectivity increases, 2) transferability declines as the divergence between donor and recipient orthologs increases, and that 3) the magnitude of this negative effect of divergence on transferability increases with connectivity. These effects are particularly robust among the translational proteins, which span the widest range of connectivities. Whereas the complexity hypothesis explains all three of these observations, the balance hypothesis explains only the first one.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3