Genome Comparison Reveals Inversions and Alternative Evolutionary History of Nutritional Endosymbionts in Planthoppers (Hemiptera: Fulgoromorpha)

Author:

Deng Junchen12ORCID,Bennett Gordon M3,Franco Diego C1,Prus-Frankowska Monika1,Stroiński Adam4,Michalik Anna5,Łukasik Piotr1

Affiliation:

1. Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University , Kraków , Poland

2. Doctoral School of Exact and Natural Sciences, Jagiellonian University , Kraków , Poland

3. Department of Life and Environmental Sciences, University of California , Merced, California , USA

4. Polish Academy of Sciences, Museum and Institute of Zoology , Warsaw , Poland

5. Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University , Kraków , Poland

Abstract

Abstract The evolutionary success of sap-feeding hemipteran insects in the suborder Auchenorrhyncha was enabled by nutritional contributions from their heritable endosymbiotic bacteria. However, the symbiont diversity, functions, and evolutionary origins in this large insect group have not been broadly characterized using genomic tools. In particular, the origins and relationships among ancient betaproteobacterial symbionts Vidania (in Fulgoromorpha) and Nasuia/Zinderia (in Cicadomorpha) are uncertain. Here, we characterized the genomes of Vidania and Sulcia from three Pyrops planthoppers (family Fulgoridae) to understand their metabolic functions and evolutionary histories. We find that, like in previously characterized planthoppers, these symbionts share nutritional responsibilities, with Vidania providing seven out of ten essential amino acids. Sulcia lineages across the Auchenorrhyncha have a highly conserved genome but with multiple independent rearrangements occurring in an early ancestor of Cicadomorpha or Fulgoromorpha and in a few succeeding lineages. Genomic synteny was also observed within each of the betaproteobacterial symbiont genera Nasuia, Zinderia, and Vidania, but not across them, which challenges the expectation of a shared ancestry for these symbionts. The further comparison of other biological traits strongly suggests an independent origin of Vidania early in the planthopper evolution and possibly of Nasuia and Zinderia in their respective host lineages. This hypothesis further links the potential acquisition of novel nutritional endosymbiont lineages with the emergence of auchenorrhynchan superfamilies.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3