The Effect of Developmental Pleiotropy on the Evolution of Insect Immune Genes

Author:

Williams Alissa M1,Ngo Thi Minh1,Figueroa Veronica E1,Tate Ann T1ORCID

Affiliation:

1. Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University , Nashville, Tennessee

Abstract

AbstractThe pressure to survive ever-changing pathogen exposure explains the frequent observation that immune genes are among the fastest evolving in the genomes of many taxa, but an intriguing proportion of immune genes also appear to be under purifying selection. Though variance in evolutionary signatures of immune genes is often attributed to differences in gene-specific interactions with microbes, this explanation neglects the possibility that immune genes participate in other biological processes that could pleiotropically constrain adaptive selection. In this study, we analyzed available transcriptomic and genomic data from Drosophila melanogaster and related species to test the hypothesis that there is substantial pleiotropic overlap in the developmental and immunological functions of genes involved in immune signaling and that pleiotropy would be associated with stronger signatures of evolutionary constraint. Our results suggest that pleiotropic immune genes do evolve more slowly than those having no known developmental functions and that signatures of constraint are particularly strong for pleiotropic immune genes that are broadly expressed across life stages. These results support the general yet untested hypothesis that pleiotropy can constrain immune system evolution, raising new fundamental questions about the benefits of maintaining pleiotropy in systems that need to rapidly adapt to changing pathogen pressures.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3