Tackling the Pangenome Dilemma Requires the Concerted Analysis of Multiple Population Genetic Processes

Author:

Baumdicker Franz123,Kupczok Anne4ORCID

Affiliation:

1. Cluster of Excellence “Controlling Microbes to Fight Infections”, Mathematical and Computational Population Genetics, University of Tübingen , Germany

2. Cluster of Excellence “Machine Learning: New Perspectives for Science”, University of Tübingen , Germany

3. Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen , Germany

4. Bioinformatics Group, Wageningen University & Research , Netherlands

Abstract

Abstract The pangenome is the set of all genes present in a prokaryotic population. Most pangenomes contain many accessory genes of low and intermediate frequencies. Different population genetics processes contribute to the shape of these pangenomes, namely selection and fitness-independent processes such as gene transfer, gene loss, and migration. However, their relative importance is unknown and highly debated. Here, we argue that the debate around prokaryotic pangenomes arose due to the imprecise application of population genetics models. Most importantly, two different processes of horizontal gene transfer act on prokaryotic populations, which are frequently confused, despite their fundamentally different behavior. Genes acquired from distantly related organisms (termed here acquiring gene transfer) are most comparable to mutation in nucleotide sequences. In contrast, gene gain within the population (termed here spreading gene transfer) has an effect on gene frequencies that is identical to the effect of positive selection on single genes. We thus show that selection and fitness-independent population genetic processes affecting pangenomes are indistinguishable at the level of single gene dynamics. Nevertheless, population genetics processes are fundamentally different when considering the joint distribution of all accessory genes across individuals of a population. We propose that, to understand to which degree the different processes shaped pangenome diversity, the development of comprehensive models and simulation tools is mandatory. Furthermore, we need to identify summary statistics and measurable features that can distinguish between the processes, where considering the joint distribution of accessory genes across individuals of a population will be particularly relevant.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3