A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information

Author:

Yogadasan Nilanth1ORCID,Doxey Andrew C1ORCID,Chuong Simon D X1ORCID

Affiliation:

1. Department of Biology, University of Waterloo , Waterloo, ON , Canada

Abstract

Abstract C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22–24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3