Single-Cell RNA Sequencing Reveals Microevolution of the Stickleback Immune System

Author:

Fuess Lauren E12ORCID,Bolnick Daniel I2

Affiliation:

1. Department of Biology, Texas State University

2. Department of Ecology and Evolutionary Biology, University of Connecticut

Abstract

AbstractThe risk and severity of pathogen infections in humans, livestock, or wild organisms depend on host immune function, which can vary between closely related host populations or even among individuals. This immune variation can entail between-population differences in immune gene coding sequences, copy number, or expression. In recent years, many studies have focused on population divergence in immunity using whole-tissue transcriptomics. But, whole-tissue transcriptomics cannot distinguish between evolved differences in gene regulation within cells, versus changes in cell composition within the focal tissue. Here, we leverage single-cell transcriptomic approaches to document signatures of microevolution of immune system structure in a natural system, the three-spined stickleback (Gasterosteus aculeatus). We sampled nine adult fish from three populations with variability in resistance to a cestode parasite, Schistocephalus solidus, to create the first comprehensive immune cell atlas for G. aculeatus. Eight broad immune cell types, corresponding to major vertebrate immune cells, were identified. We were also able to document significant variation in both abundance and expression profiles of the individual immune cell types among the three populations of fish. Furthermore, we demonstrate that identified cell type markers can be used to reinterpret traditional transcriptomic data: we reevaluate previously published whole-tissue transcriptome data from a quantitative genetic experimental infection study to gain better resolution relating infection outcomes to inferred cell type variation. Our combined study demonstrates the power of single-cell sequencing to not only document evolutionary phenomena (i.e., microevolution of immune cells) but also increase the power of traditional transcriptomic data sets.

Funder

National Science Foundation

University of Connecticut

American Association of Immunologists Intersect Postdoctoral Fellowship

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3