Thermal stability tuning without affecting gas-binding function of Thermochromatium tepidum cytochrome c′

Author:

Fujii Sotaro1,Kobayashi Satoru2,Yoshimi Taisuke1,Kobayashi Yuji3,Wakai Satoshi4,Yamanaka Masaru5,Sambongi Yoshihiro1

Affiliation:

1. Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan

2. Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan

3. Graduate School of Engineering, Osaka University, Osaka, Japan

4. Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

5. Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan

Abstract

ABSTRACT Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c′ (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences. In addition, PHCP, TTCP, and AVCP and their variants with altered stability similarly bound nitric oxide and carbon oxide, but not oxygen. Therefore, the thermal stability of TTCP together with PHCP and AVCP can be tuned through specific interactions around the heme without affecting their gas-binding function. These cytochromes c′ will be useful as specific gas sensor proteins exhibiting a wide thermal stability range.

Funder

JSPS

Hiroshima University

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3