Affiliation:
1. Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
Abstract
ABSTRACT
Progranulin (PGRN) is a multifunctional growth factor expressed in central nervous system. Although PGRN expression is regulated by various stressors, its precise role(s) and regulatory mechanism(s) remain elusive. In this study, we used HT22 cells to investigate the physiological implications of oxidative stress-induced PGRN expression and the regulation of PGRN expression by oxidative stress. We observed that p38 MAP kinase was activated upon the addition of H2O2, and a selective p38 MAP kinase inhibitor attenuated PGRN induction by H2O2. To explore the physiological role(s) of the PGRN induction, we first confirmed H2O2-dependent responses of HT22 cells and found that the length and number of neurites were increased by H2O2. Pgrn knockdown experiments suggested that these changes were mediated by H2O2-induced PGRN expression, at least in part. Overall, the results suggested that an increase in oxidative stress in HT22 cells induced PGRN expression via p38 MAP kinase pathway, thereby controlling neurite outgrowth.
Funder
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Subject
Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献