Affiliation:
1. ENSUIKO Sugar Refining Co., Ltd., Tokyo, Japan
2. Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
Abstract
ABSTRACT
In 2004, the US Department of Energy listed d-glucaric acid as one of the top 12 bio-based chemicals and a potential biopolymer building block. In this study, we show that Pseudogluconobacter saccharoketogenes strains can produce d-glucaric acid from d-glucose, although in low yield because of the generation of the byproduct 2-keto-d-gluconic acid in large quantities. To improve d-glucaric acid yield, we generated Rh47-3, a P. saccharoketogenes IFO14464 mutant, which produced d-glucaric acid from d-gluconic acid and d-glucose with 81 and 53 mol% yields, respectively. Furthermore, the key enzymes involved in d-glucaric acid production, alcohol dehydrogenase (Ps-ADH), aldehyde dehydrogenase (Ps-ALDH), and gluconate 2-dehydrogenase (Ps-GADH), were purified and their roles in d-glucaric acid synthesis were evaluated. Ps-ADH and Ps-ALDH catalyzed d-glucaric acid production, which was mediated by d-gluconic acid and d-glucuronic acid pathways. In contrast, Ps-GADH inhibited d-glucaric acid production by promoting the formation of 2-keto-d-gluconic acid from d-glucose.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Society for the Promotion of Science
Publisher
Oxford University Press (OUP)
Subject
Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献