Effect of different heating conditions on odor of yellowtail Seriola quinqueradiata muscles

Author:

Hamakawa Yumi12,Mukojima Kaori23,Uchiyama Maki4,Okada Shoko4,Mabuchi Ryota5,Furuta Ayumi6,Tanimoto Shota6

Affiliation:

1. Hokkaido Research Organization Abashiri Fisheries Research Institute, Hokkaido, Japan

2. Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Hiroshima, Japan

3. Faculty of Health and Nutrition, Hijiyama University, Hiroshima, Japan

4. Faculty of Human Culture and Science, Prefectural University of Hiroshima, Hiroshima, Japan

5. Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Japan

6. Faculty of Regional Development, Prefectural University of Hiroshima, Hiroshima, Japan

Abstract

ABSTRACT The effects of different heating conditions set to prevent food poisoning on the volatile components, lipid oxidation, and odor of yellowtail, Seriola quinqueradiata, were investigated. The heating conditions did not affect the lipid oxidation, fatty acid composition, and volatile compounds of each part of the flesh. High-temperature/short-time (90 °C for 6 min) heating led to significantly higher trimethylamine (TMA) contents in all muscle parts and higher odor intensity of TMA in dark muscle (DM) compared to those of lower temperature heating. Sensory evaluation showed that the odor intensities of all muscle parts heated at high-temperature/short-time were stronger than those at low-temperature/long-time (63 °C for 30 min). All DM samples had less odor palatability than the other flesh parts. Therefore, DM may have contributed to the unfavorable odor of steamed yellowtail meat and high-temperature/short-time heating may have enhanced the odor of all flesh parts compared with those subjected to low-temperature/long-time.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Organic Chemistry,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Biochemistry,Analytical Chemistry,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3