E-Cigarette Use, Cigarette Smoking, and Sex Are Associated With Nasal Microbiome Dysbiosis

Author:

Hickman Elise12,Roca Cristian34,Zorn Bryan T4,Rebuli Meghan E125ORCID,Robinette Carole1,Wolfgang Matthew C34,Jaspers Ilona1235ORCID

Affiliation:

1. Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

2. Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

3. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

4. Marsico Lung Institute, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

5. Department of Pediatrics, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA

Abstract

Abstract Introduction Previous research suggests that e-cigarettes can alter immune function, including in the nasal mucosa, in unique ways. The respiratory microbiome plays a key role in respiratory host defense, but the effects of e-cigarettes on the respiratory or nasal microbiome, are not well understood. Aims and Methods Using 16S rRNA gene sequencing on nasal samples from adult e-cigarette users, smokers, and nonsmokers, we determined that e-cigarette use and cigarette smoking are associated with differential respiratory microbiome dysbiosis and substantial sex-dependent differences in the nasal microbiome, particularly in e-cigarette users. Results Staphylococcus aureus, a common respiratory pathogen, was more abundant in both e-cigarette users and smokers in comparison with nonsmokers, while Lactobacillus iners, often considered a protective species, was more abundant in smokers but less abundant in e-cigarette users in comparison with nonsmokers. In addition, we identified significant dysbiosis of the nasal microbiome between e-cigarette users and smokers with high versus low serum cotinine levels, an indicator of tobacco product use and toxicant exposure. We also analyzed nasal lavage fluid for immune mediators associated with host × microbiota interactions. Conclusions Our analysis identified disruption of immune mediators in the nose of e-cigarette users and smokers, which is indicative of disrupted respiratory mucosal immune responses. Taken together, our data identified unique, sex-dependent host immune dysfunction associated with e-cigarette use in the nasal mucosa. More broadly, our data highlight the need for continued inclusion and careful consideration of sex as an important variable in the context of toxicant exposures. Implications This is the first study investigating the effects of e-cigarette use and sex on the nasal microbiome, which is considered an important gatekeeper for protecting the lower respiratory tract from pathogens. We found significant sex, exposure group, and serum cotinine level-associated differences in the composition of the nasal microbiome, demonstrating the importance of considering sex in future nasal microbiome studies and warranting further investigation of the mechanisms by which e-cigarette use dysregulates nasal immune homeostasis.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3