Salidroside protect Chinese hamster V79 cells from genotoxicity and oxidative stress induced by CL-20

Author:

Li Cunzhi123,Deng Hui3,Liu Zhiyong3,Lv Xiaoqiang3,Gao Wenzhi3,Gao Yongchao3,Gao Junhong3,Hu Lifang12

Affiliation:

1. Laboratory for Bone Metabolism , Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, , NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072 , China

2. Northwestern Polytechnical University , Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, , NO.127 Youyi West Road, Beilin District, Xi'an, Shaanxi 710072 , China

3. Toxicology Research Center, Institute for Hygiene of Ordnance Industry , NO. 12 Zhangbadong Road, Yanta District, Xi’an Shaanxi 710065 , China

Abstract

AbstractHexanitrohexaazaisowurtzitane (CL-20) is a high-energy elemental explosive widely used in chemical and military fields. CL-20 harms environmental fate, biosafety, and occupational health. However, there is little known about the genotoxicity of CL-20, in particular its molecular mechanisms. Therefore, this study was framed to investigate the genotoxic mechanisms of CL-20 in V79 cells and evaluate whether the genotoxicity could be diminished by pretreating the cells with salidroside. The results showed that CL-20-induced genotoxicity in V79 cells primarily through oxidative damage to DNA and mitochondrial DNA (mtDNA) mutation. Salidroside could significantly reduce the inhibitory effect of CL-20 on the growth of V79 cells and reduce the levels of reactive oxygen species (ROS), 8-hydroxy-2 deoxyguanosine (8-OHdG), and malondialdehyde (MDA). Salidroside also restored CL-20-induced superoxide dismutase (SOD) and glutathione (GSH) in V79 cells. As a result, salidroside attenuated the DNA damage and mutations induced by CL-20. In conclusion, oxidative stress may be involved in CL-20-induced genotoxicity in V79 cells. Salidroside could protect V79 cells from oxidative damage induced by CL-20, mechanism of which may be related to scavenging intracellular ROS and increasing the expression of proteins that can promote the activity of intracellular antioxidant enzymes. The present study for the mechanisms and protection of CL-20-mediated genotoxicity will help further to understand the toxic effects of CL-20 and provide information on the therapeutic effect of salidroside in CL-20-induced genotoxicity.

Funder

Open Cooperation Innovation Fund Project of Xi’an Modern Chemistry Research Institute

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3