Screen identifies fasudil as a radioprotector on human fibroblasts

Author:

Yao Yanling12,Chen Chen12,Cai Zuchao12,Liu Guochao12,Ding Chenxia12,Lim David345,Chao Dong12ORCID,Feng Zhihui12ORCID

Affiliation:

1. Department of Occupational Health and Occupational Medicine , School of Public Health, , Jinan 250012, Shandong , China

2. Cheeloo College of Medicine, Shandong University , School of Public Health, , Jinan 250012, Shandong , China

3. Health services Management , School of Science and Health, , Campbelltown 1797 , Australia

4. Translational Health Research Institute, Western Sydney University , School of Science and Health, , Campbelltown 1797 , Australia

5. College of Medicine and Public Health, Flinders University , Bedford Park 5042 , Australia

Abstract

Abstract Background Radioprotectors safeguard biological system exposed to ionizing radiation (IR) by protecting normal cells from radiation damage during radiotherapy. Due to the toxicity and limited clinical utility of the present radioprotectors, it prompts us to identify novel radioprotectors that could alleviate IR-induced cytotoxicity of normal tissues. Aims and Methods To identify new radioprotectors, we screened a chemical molecular library comprising 253 compounds in normal human fibroblasts (HFs) or 16HBE cells upon IR by CCK-8 assays and clonogenic survival assays. Fasudil was identified as a potential effective radioprotector. Results The results indicated that Fasudil exerts radioprotective effects on HFs against IR-induced DNA double-strand breaks (DSBs) through the regulation of DSB repair. Fasudil increased homologous recombination (HR) repair by 45.24% and decreased non-homologous end-joining (NHEJ) by 63.88% compared with untreated cells, without affecting changes to cell cycle profile. We further found that fasudil significantly facilitated the expression and foci formation of HR core proteins such as Rad51 and BRCA1 upon IR, and decreased the expression of NHEJ-associated proteins such as DNA-PKcs at 24 h post-IR. Conclusion Our study identified fasudil as a novel radioprotector that exert radioprotective effects on normal cells through regulation of DSB repair by promoting HR repair.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Shandong Province

Young Elite Scientists Sponsorship Program

China Association for Science and Technology

Cheeloo Young Scholar Project

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3