Affiliation:
1. Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University Emergency Department, , No.61, Jiefang west Road, Furong District, Changsha, Hunan Province 410005, P. R. China
Abstract
Abstract
Background
Pulmonary fibrosis is considered to be an irreversible lung injury, which can be caused by paraquat (PQ) poisoning. MiRNAs have been demonstrated crucial roles in pulmonary fibrosis caused by numerous approaches including PQ induction. The purpose of this study was to investigate the role and the underlying mechanism of miR-215 in PQ-induced pulmonary fibrosis.
Methods
The cell and animal models of pulmonary fibrosis were established through PQ intervention. Cell viability was performed to test by MTT assay. Immunofluorescence assay was used to detect COL1A1 expression and its location. The relationships among E2F1, miR-215-5p, and BMPR2 were validated by dual luciferase reporter gene assay, chromatin immunoprecipitation and RNA-binding protein immunoprecipitation. Lung morphology was evaluated by hematoxylin and eosin staining.
Results
MiR-215-5p was upregulated in PQ-induced pulmonary fibrosis in vitro and in vivo. MiR-215-5p silencing relieved PQ-induced pulmonary fibrosis progression by enhancing cell viability and reducing the expression of fibrosis-related markers (COL1A1, COL3A1, and α-SMA). Mechanistically, miR-215-5p directly targeted BMRP2. BMPR2 knockdown abolished the suppressive effects of miR-215-5p knockdown on PQ-induced pulmonary fibrosis. In addition, E2F1 interacted with miR-215-5p promoter and positively regulated miR-215-5p expression. E2F1 downregulation reduced miR-215-5p level and promoted BMPR2 level via regulating TGF-β/Smad3 pathway, and then suppressed PQ-induced pulmonary fibrosis, whereas these effects were compromised by miR-215-5p sufficiency.
Conclusion
MiR-215-5p was activated by E2F1 to repress BMPR2 expression and activate TGF-β/Smad3 pathway, which aggravated PQ-induced pulmonary fibrosis progression. Targeting the E2F1/miR-215-5p/BMPR2 axis might be a new approach to alleviate PQ-induced pulmonary fibrosis.
Funder
Scientific Research Project of Hunan Provincial Health Commission
Hunan Provincial Science and Technology Innovation
Publisher
Oxford University Press (OUP)
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献